Retrieve coefficients from a fitted "glmgraph" object, depending on the userspecified regularization parameters.
1 2 
object 
Fitted 
lambda1 
Values of the regularization parameter 
lambda2 
The userspecified regularization 
... 
Other parameters to 
If lambda1
and lambda2
are missing, all coefficients of fitted glmgraph
object will be returned.
If only lambda1
is missing, then coefficients of specified lambda2
will be returned.
The object returned depends on type.
Li Chen <li.chen@emory.edu>, Jun Chen <chen.jun2@mayo.edu>
Li Chen. Han Liu. Hongzhe Li. Jun Chen. (2015) glmgraph: Graphconstrained Regularization for Sparse Generalized Linear Models.(Working paper)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  set.seed(1234)
library(glmgraph)
n < 100
p1 < 10
p2 < 90
p < p1+p2
X < matrix(rnorm(n*p), n,p)
magnitude < 1
## construct laplacian matrix from adjacency matrix
A < matrix(rep(0,p*p),p,p)
A[1:p1,1:p1] < 1
A[(p1+1):p,(p1+1):p] < 1
diag(A) < 0
btrue < c(rep(magnitude,p1),rep(0,p2))
intercept < 0
eta < intercept+X%*%btrue
diagL < apply(A,1,sum)
L < A
diag(L) < diagL
### gaussian
Y < eta+rnorm(n)
obj < glmgraph(X,Y,L)
coefs < coef(obj)
coefs < coef(obj,lambda2=0.01)
coefs < coef(obj,lambda1=c(0.11,0.12))
coefs < coef(obj,lambda1=c(0.11,0.12),lambda2=0.01)

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.
Please suggest features or report bugs with the GitHub issue tracker.
All documentation is copyright its authors; we didn't write any of that.