# Retrieve coefficients from a fitted "glmgraph" object.

### Description

Retrieve coefficients from a fitted "glmgraph" object, depending on the user-specified regularization parameters.

### Usage

1 2 |

### Arguments

`object` |
Fitted |

`lambda1` |
Values of the regularization parameter |

`lambda2` |
The user-specified regularization |

`...` |
Other parameters to |

### Details

If `lambda1`

and `lambda2`

are missing, all coefficients of fitted `glmgraph`

object will be returned.
If only `lambda1`

is missing, then coefficients of specified `lambda2`

will be returned.

### Value

The object returned depends on type.

### Author(s)

Li Chen <li.chen@emory.edu>, Jun Chen <chen.jun2@mayo.edu>

### References

Li Chen. Han Liu. Hongzhe Li. Jun Chen. (2015) glmgraph: Graph-constrained Regularization for Sparse Generalized Linear Models.(Working paper)

### See Also

`predict.glmgraph`

,`glmgraph`

### Examples

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ```
set.seed(1234)
library(glmgraph)
n <- 100
p1 <- 10
p2 <- 90
p <- p1+p2
X <- matrix(rnorm(n*p), n,p)
magnitude <- 1
## construct laplacian matrix from adjacency matrix
A <- matrix(rep(0,p*p),p,p)
A[1:p1,1:p1] <- 1
A[(p1+1):p,(p1+1):p] <- 1
diag(A) <- 0
btrue <- c(rep(magnitude,p1),rep(0,p2))
intercept <- 0
eta <- intercept+X%*%btrue
diagL <- apply(A,1,sum)
L <- -A
diag(L) <- diagL
### gaussian
Y <- eta+rnorm(n)
obj <- glmgraph(X,Y,L)
coefs <- coef(obj)
coefs <- coef(obj,lambda2=0.01)
coefs <- coef(obj,lambda1=c(0.11,0.12))
coefs <- coef(obj,lambda1=c(0.11,0.12),lambda2=0.01)
``` |