Description Details Author(s) References Examples
Fit a generalized linear model at grids of tuning parameter via penalized maximum likelihood. The regularization path is computed for a combination of sparse and smooth penalty at two grids of values for the regularization parameter lambda1(Lasso or MCP penalty) and lambda2(Laplacian penalty). Fits linear, logistic regression models.
| Package: | glmgraph | 
| Type: | Package | 
| Version: | 1.0-0 | 
| Date: | 2015-03-11 | 
| License: | GPL-2 | 
The algorithm accepts a design matrix X, a vector of responses Y and a Laplacian matrix L.
Produces the regularization path over the grid of tuning parameter lambda1 and lambda2. 
It consists of the following main functions 
glmgraph
cv.glmgraph
plot.glmgraph
coef.glmgraph
predict.glmgraph
Li Chen <li.chen@emory.edu>, Jun Chen <jun.chen2@mayo.edu>
Li Chen. Han Liu. Hongzhe Li. Jun Chen(2015) glmgraph: Graph-constrained Regularization for Sparse Generalized Linear Models.(Working paper)
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |  set.seed(1234)
 library(glmgraph)
 n <- 100
 p1 <- 10
 p2 <- 90
 p <- p1+p2
 X <- matrix(rnorm(n*p), n,p)
 magnitude <- 1
 ## Construct Adjacency and Laplacian matrices
 A <- matrix(rep(0,p*p),p,p)
 A[1:p1,1:p1] <- 1
 A[(p1+1):p,(p1+1):p] <- 1
 diag(A) <- 0
 diagL <- apply(A,1,sum)
 L <- -A
 diag(L) <- diagL
 btrue <- c(rep(magnitude,p1),rep(0,p2))
 intercept <- 0
 eta <- intercept+X%*%btrue
 Y <- eta+rnorm(n)
 obj <- glmgraph(X,Y,L,family="gaussian")
 plot(obj)
 betas <- coef(obj)
 betas <- coef(obj,lambda1=c(0.1,0.2))
 yhat <- predict(obj,X,type="response")
 cv.obj <- cv.glmgraph(X,Y,L)
 plot(cv.obj)
 beta.min <- coef(cv.obj)
 yhat.min <- predict(cv.obj,X)
 
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.