Description Usage Arguments Author(s) References See Also Examples
Similar to other predict methods, this function returns predictions from
a fitted "glmgraph" object.
| 1 2 3 | 
| object | Fitted  | 
| X | Matrix of values at which predictions are to be made. | 
| lambda1 | Values of the regularization parameter  | 
| lambda2 |  Values of the regularization parameter  | 
| type | Type of prediction:  | 
| ... | Other parameters to  | 
Li Chen <li.chen@emory.edu> , Jun Chen <chen.jun2@mayo.edu>
Li Chen. Han Liu. Hongzhe Li. Jun Chen. (2015) glmgraph: Graph-constrained Regularization for Sparse Generalized Linear Models.(Working paper)
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |  set.seed(1234)
 library(glmgraph)
 n <- 100
 p1 <- 10
 p2 <- 90
 p <- p1+p2
 X <- matrix(rnorm(n*p), n,p)
 magnitude <- 1
 ## construct laplacian matrix from adjacency matrix
 A <- matrix(rep(0,p*p),p,p)
 A[1:p1,1:p1] <- 1
 A[(p1+1):p,(p1+1):p] <- 1
 diag(A) <- 0
 btrue <- c(rep(magnitude,p1),rep(0,p2))
 intercept <- 0
 eta <- intercept+X%*%btrue
 diagL <- apply(A,1,sum)
 L <- -A
 diag(L) <- diagL
 ### gaussian
 Y <- eta+rnorm(n)
 obj <- glmgraph(X,Y,L)
 res <- predict(obj, X, type="link", lambda1=0.05,lambda2=0.01)
 res <- predict(obj, X, type="response", lambda1=0.05,lambda2=0.01)
 res <- predict(obj,X,type="nzeros",lambda1=0.05,lambda2=0.01)
 ### binomial
 Y <- rbinom(n,1,prob=1/(1+exp(-eta)))
 obj <- glmgraph(X,Y,L,family="binomial")
 res <- predict(obj,X,type="class",lambda1=c(0.05,0.06),lambda2=c(0.02,0.16,0.32))
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.