simulate_new | R Documentation |
See vignette("sim", package = "glmmTMB")
for more details and examples,
and vignette("covstruct", package = "glmmTMB")
for more information on the parameterization of different covariance structures.
simulate_new(
object,
nsim = 1,
seed = NULL,
family = gaussian,
newdata,
newparams,
...,
return_val = c("sim", "pars", "object")
)
object |
a one-sided model formula (e.g. |
nsim |
number of simulations |
seed |
random-number seed |
family |
a family function, a character string naming a family function, or the result of a call to a family function (variance/link function) information. See |
newdata |
a data frame containing all variables listed in the formula, including the response variable (which needs to fall within the domain of the conditional distribution, and should probably not be all zeros, but whose value is otherwise irrelevant) |
newparams |
a list of parameters containing sub-vectors
( |
... |
other arguments to |
return_val |
what information to return: "sim" (the default) returns a list of vectors of simulated outcomes; "pars" returns the default parameter vector (this variant does not require |
Use the weights
argument to set the size/number of trials per observation for binomial-type models; the default is 1 for every observation (i.e., Bernoulli trials)
glmmTMB
, family_glmmTMB
(for conditional distribution parameterizations [betadisp
]), put_cor
(for correlation matrix parameterizations)
## use Salamanders data for observational design and covariate values
## parameters used here are sensible, but do not fit the original data
params <- list(beta = c(2, 1),
betazi = c(-0.5, 0.5), ## logit-linear model for zi
betadisp = log(2), ## log(NB dispersion)
theta = log(1)) ## log(among-site SD)
sim_count <- simulate_new(~ mined + (1|site),
newdata = Salamanders,
zi = ~ mined,
family = nbinom2,
seed = 101,
newparams = params
)
## simulate_new with return="sim" always returns a list of response vectors
Salamanders$sim_count <- sim_count[[1]]
summary(glmmTMB(sim_count ~ mined + (1|site), data=Salamanders, ziformula=~mined, family=nbinom2))
## return a glmmTMB object
sim_obj <- simulate_new(~ mined + (1|site),
return_val = "object",
newdata = Salamanders,
zi = ~ mined,
family = nbinom2,
newparams = params)
## simulate Gaussian data, multivariate random effect
data("sleepstudy", package = "lme4")
sim_obj <- simulate_new(~ 1 + (1|Subject) + ar1(0 + factor(Days)|Subject),
return_val = "pars",
newdata = sleepstudy,
family = gaussian,
newparams = list(beta = c(280, 1),
betad = log(2), ## log(residual std err)
theta = c(log(2), ## log(SD(subject))
log(2), ## log(SD(slope))
## AR1 correlation = 0.2
put_cor(0.2, input_val = "vec"))
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.