Nothing
#' Perform smoothing inference in a Gaussian mixture dynamic Bayesian network
#'
#' This function performs smoothing inference in a Gaussian mixture dynamic
#' Bayesian network. For a sequence of \eqn{T} time slices, this task consists
#' in estimating the state of the system at each time slice \eqn{t} (for
#' \eqn{1 \le t \le T}) given all the data (the evidence) collected up to
#' \eqn{T}. Smoothing inference is performed by sequential importance
#' resampling, which is a particle-based approximate method (Koller and
#' Friedman, 2009).
#'
#' @param gmdbn An object of class \code{gmdbn}.
#' @param evid A data frame containing the evidence. Its columns must explicitly
#' be named after nodes of \code{gmdbn} and can contain missing values (columns
#' with no value can be removed).
#' @param nodes A character vector containing the inferred nodes (by default all
#' the nodes of \code{gmdbn}).
#' @param col_seq A character vector containing the column names of \code{evid}
#' that describe the observation sequence. If \code{NULL} (the default), all the
#' observations belong to a single sequence. The observations of a same sequence
#' must be ordered such that the \eqn{t}th one is related to time slice \eqn{t}
#' (note that the sequences can have different lengths).
#' @param n_part A positive integer corresponding to the number of particles
#' generated for each observation sequence.
#' @param max_part_sim An integer greater than or equal to \code{n_part}
#' corresponding to the maximum number of particles that can be processed
#' simultaneously. This argument is used to prevent memory overflow, dividing
#' \code{evid} into smaller subsets that are handled sequentially.
#' @param min_ess A numeric value in [0, 1] corresponding to the minimum ESS
#' (expressed as a proportion of \code{n_part}) under which the renewal step of
#' sequential importance resampling is performed. If \code{1} (the default),
#' this step is performed at each time slice.
#' @param verbose A logical value indicating whether subsets of \code{evid} and
#' time slices in progress are displayed.
#'
#' @return A data frame (tibble) with a structure similar to \code{evid}
#' containing the estimated values of the inferred nodes and their observation
#' sequences (if \code{col_seq} is not \code{NULL}).
#'
#' @references
#' Koller, D. and Friedman, N. (2009). \emph{Probabilistic Graphical Models:
#' Principles and Techniques}. The MIT Press.
#'
#' @seealso \code{\link{filtering}}, \code{\link{inference}},
#' \code{\link{prediction}}
#'
#' @examples
#' \donttest{
#' set.seed(0)
#' data(gmdbn_air, data_air)
#' evid <- data_air
#' evid$NO2[sample.int(7680, 1536)] <- NA
#' evid$O3[sample.int(7680, 1536)] <- NA
#' evid$TEMP[sample.int(7680, 1536)] <- NA
#' evid$WIND[sample.int(7680, 1536)] <- NA
#' smooth <- smoothing(gmdbn_air, evid, col_seq = "DATE", verbose = TRUE)}
#'
#' @export
smoothing <- function(gmdbn, evid, nodes = names(gmdbn$b_1), col_seq = NULL,
n_part = 1000, max_part_sim = 1e06, min_ess = 1,
verbose = FALSE) {
if (!inherits(gmdbn, "gmdbn")) {
"gmdbn is not of class \"gmdbn\"" %>%
stop()
}
if (!is.data.frame(evid)) {
"evid is not a data frame" %>%
stop()
}
evid <- evid %>%
ungroup()
col_evid <- evid %>%
colnames()
if (any(duplicated(col_evid))) {
"evid has duplicated column names" %>%
stop()
}
struct <- gmdbn %>%
structure()
nodes_gmdbn <- struct$nodes
is_col_seq <- !is.null(col_seq)
if (is_col_seq) {
if (!is.vector(col_seq, "character")) {
"col_seq is not a character vector" %>%
stop()
}
col_seq <- col_seq %>%
unique()
if (any(!str_detect(col_seq,
"^(\\.([A-Za-z_\\.]|$)|[A-Za-z])[A-Za-z0-9_\\.]*$"))) {
"col_seq contains invalid column names" %>%
stop()
}
if (any(str_remove(col_seq, "\\.[1-9][0-9]*$") %in% nodes_gmdbn)) {
"col_seq contains nodes (or instantiations of nodes) of gmdbn" %>%
stop()
}
if (any(!(col_seq %in% col_evid))) {
"elements of col_seq are not column names of evid" %>%
stop()
}
}
seq <- evid %>%
select(all_of(col_seq)) %>%
as_tibble()
if (any(!(map_chr(seq, mode) %in% c("numeric", "character", "logical")))) {
"columns of evid[col_seq] have invalid types" %>%
stop()
}
if (length(gmdbn) == 1) {
smooth <- seq %>%
bind_cols(inference(gmdbn$b_1, evid, nodes = nodes, n_part = n_part,
max_part_sim = max_part_sim, verbose = verbose))
} else {
if (!is.vector(nodes, "character")) {
"nodes is not a character vector" %>%
stop()
}
nodes <- nodes %>%
unique()
n_nodes <- nodes %>%
length()
if (n_nodes == 0) {
"nodes is empty" %>%
stop()
}
if (any(!(nodes %in% nodes_gmdbn))) {
"elements of nodes are not nodes of gmdbn" %>%
stop()
}
nodes <- nodes %>%
sort()
if (nrow(evid) == 0) {
nodes_0 <- numeric() %>%
matrix(0, n_nodes, dimnames = list(NULL, nodes))
smooth <- seq %>%
slice(0) %>%
bind_cols(as_tibble(nodes_0))
} else {
if (!is.vector(n_part, "numeric")) {
"n_part is not a numeric value" %>%
stop()
}
if (length(n_part) != 1) {
"n_part is not of length 1" %>%
stop()
}
if (!is.finite(n_part)) {
"n_part is not finite" %>%
stop()
}
if (n_part <= 0) {
"n_part is not positive" %>%
stop()
}
if (round(n_part) != n_part) {
"n_part is not an integer" %>%
stop()
}
if (!is.vector(max_part_sim, "numeric")) {
"max_part_sim is not a numeric value" %>%
stop()
}
if (length(max_part_sim) != 1) {
"max_part_sim is not of length 1" %>%
stop()
}
if (is.na(max_part_sim)) {
"max_part_sim is NA" %>%
stop()
}
if (max_part_sim < n_part) {
"max_part_sim is lower than n_part" %>%
stop()
}
if (round(max_part_sim) != max_part_sim) {
"max_part_sim is not an integer" %>%
stop()
}
if (!is.vector(verbose, "logical")) {
"verbose is not a logical value" %>%
stop()
}
if (length(verbose) != 1) {
"verbose is not of length 1" %>%
stop()
}
if (is.na(verbose)) {
"verbose is NA" %>%
stop()
}
n_nodes_gmdbn <- nodes_gmdbn %>%
length()
if (n_nodes < n_nodes_gmdbn) {
evid_nodes <- evid %>%
select(any_of(nodes_gmdbn))
nodes_obs <- evid_nodes %>%
select(where(~ !any(is.na(.)))) %>%
colnames()
nodes_miss <- evid_nodes %>%
select(where(~ all(is.na(.)))) %>%
colnames() %>%
c(setdiff(nodes_gmdbn, colnames(evid_nodes)))
gmdbn <- gmdbn %>%
relevant(nodes, nodes_obs, nodes_miss)
nodes_gmdbn <- gmdbn$b_1 %>%
names()
n_nodes_gmdbn <- nodes_gmdbn %>%
length()
}
col_evid_prop <- col_seq %>%
c(nodes_gmdbn)
prefix <- col_evid_prop %>%
sort() %>%
last() %>%
str_c("_")
col_n <- prefix %>%
str_c("n")
col_sub <- prefix %>%
str_c("sub")
col_weight <- prefix %>%
str_c("weight")
col_draw <- prefix %>%
str_c("draw")
col_prop <- col_seq %>%
c(col_weight, col_draw)
n_prop <- struct$arcs %>%
bind_rows() %>%
filter(from %in% nodes_gmdbn, to %in% nodes_gmdbn) %>%
.$lag %>%
max(0) - 1
if (n_prop >= 0) {
col_prop <- col_prop %>%
c(str_c(rep(str_c(nodes_gmdbn, "."), n_prop),
rep(rev(seq_len(n_prop)), each = n_nodes_gmdbn)),
nodes_gmdbn)
}
col_smooth <- col_seq %>%
c(nodes)
col_part <- col_smooth %>%
c(col_weight, col_draw)
col_time <- prefix %>%
str_c("time")
evid <- evid %>%
select(any_of(col_evid_prop))
list_part <- list()
times_gmbn <- gmdbn %>%
names() %>%
str_remove("b_") %>%
as.numeric() %>%
c(Inf)
time_gmbn <- 1
i_gmbn <- 1
n_times_seq <- seq %>%
group_by(across(col_seq)) %>%
summarise(!!col_n := n(), .groups = "drop")
n_sub <- (nrow(n_times_seq) * n_part - 1) %/% max_part_sim + 1
smooth <- n_times_seq %>%
mutate(!!col_sub := ntile(!!sym(col_n), n_sub)) %>%
group_by(across(col_sub)) %>%
group_map(function(n_times_seq, sub) {
if (verbose) {
verb <- "subset " %>%
str_c(sub[[col_sub]], " / ", n_sub)
"\n" %>%
c(verb, "\n", rep("-", str_length(verb)), "\n") %>%
str_c(collapse = "") %>%
cat()
}
seq <- n_times_seq %>%
select(all_of(col_seq))
if (n_sub > 1) {
evid <- seq %>%
inner_join(evid, by = col_seq)
}
part <- seq %>%
particles(col_weight = col_weight, n_part = n_part)
max_time <- n_times_seq[[col_n]] %>%
max()
for (time in seq_len(max_time)) {
if (verbose) {
"time " %>%
str_c(time, " / ", max_time, "\n") %>%
cat()
}
evid_time <- evid %>%
group_by(across(col_seq)) %>%
slice(time) %>%
ungroup()
part <- part %>%
mutate(!!col_draw := seq_len(n()))
if (is_col_seq) {
part <- part %>%
semi_join(evid_time, by = col_seq)
}
part <- part %>%
select(any_of(col_prop))
if (time == time_gmbn) {
gmbn <- gmdbn[[i_gmbn]]
i_gmbn <- i_gmbn + 1
time_gmbn <- times_gmbn[i_gmbn]
}
part <- part %>%
propagation(gmbn, evid_time, col_seq = col_seq,
col_weight = col_weight, min_ess = min_ess)
list_part <- list_part %>%
c(list(select(part, all_of(col_part))))
}
n_times_seq %>%
group_by(across(col_n)) %>%
group_map(function(seq, n) {
max_time <- n[[col_n]]
part <- list_part[[max_time]]
if (is_col_seq) {
part <- part %>%
semi_join(seq, by = col_seq)
}
weights <- part[[col_weight]]
list_aggreg <- list()
list_aggreg[[max_time]] <- part %>%
select(all_of(col_smooth))
for (time in rev(seq_len(max_time - 1))) {
part <- list_part[[time]] %>%
slice(part[[col_draw]])
list_aggreg[[time]] <- part %>%
select(all_of(col_smooth))
}
list_aggreg %>%
map(function(part) {
part %>%
mutate(across(nodes, ~ . * weights)) %>%
group_by(across(col_seq)) %>%
summarise(across(nodes, sum)) %>%
ungroup() %>%
return()
}) %>%
bind_rows() %>%
return()
}) %>%
bind_rows() %>%
return()
}) %>%
bind_rows() %>%
group_by(across(col_seq)) %>%
mutate(!!col_time := seq_len(n())) %>%
ungroup()
smooth <- seq %>%
group_by(across(col_seq)) %>%
mutate(!!col_time := seq_len(n())) %>%
ungroup() %>%
inner_join(smooth, by = c(col_seq, col_time)) %>%
select(all_of(col_smooth))
}
}
smooth %>%
return()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.