parametric.nlsfit | R Documentation |
NLS fit with parametric bootstrap
parametric.nlsfit(fn, par.guess, boot.R, y, dy, x, dx, lower = rep(x = -Inf, times = length(par.guess)), upper = rep(x = +Inf, times = length(par.guess)), ..., bootstrap = TRUE)
fn |
|
par.guess |
initial guess values for the fit parameters. |
boot.R |
numeric. Number of bootstrap samples to generate. |
y |
the data as a one-dimensional numerical vector to be described by the fit function. |
dy, dx |
Numeric vector. Errors of the dependent and independent variable, respectively. These do not need to be specified as they can be computed from the bootstrap samples. In the case of parametric bootstrap it might would lead to a loss of information if they were computed from the pseudo-bootstrap samples. They must not be specified if a covariance matrix is given. |
x |
values of the explaining variable in form of a one-dimensional numerical vector. |
lower |
Numeric vector of length |
upper |
Numeric vector of length |
... |
Additional parameters passed to |
bootstrap |
Shall the error calculation be performed using boostrap?
If not, the errors are estimated with help of the jacobian (either provided
in |
See simple.nlsfit.
Other NLS fit functions:
bootstrap.nlsfit()
,
parametric.bootstrap.cov()
,
parametric.bootstrap()
,
parametric.nlsfit.cov()
,
plot.bootstrapfit()
,
predict.bootstrapfit()
,
print.bootstrapfit()
,
simple.nlsfit()
,
summary.bootstrapfit()
## Declare some data. value <- c(0.1, 0.2, 0.3) dvalue <- c(0.01, 0.01, 0.015) x <- c(1, 2, 3) dx <- c(0.1, 0.1, 0.1) boot.R <- 1500 fn <- function (par, x, ...) par[1] + par[2] * x fit.result <- parametric.nlsfit(fn, c(1, 1), boot.R, value, dvalue, x, dx) summary(fit.result)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.