| A1Benchmark | Yahoo Webscope S5 – A1 Benchmark (Real) |
| A2Benchmark | Yahoo Webscope S5 – A2 Benchmark (Synthetic) |
| A3Benchmark | Yahoo Webscope S5 – A3 Benchmark (Synthetic with Outliers) |
| A4Benchmark | Yahoo Webscope S5 – A4 Benchmark (Synthetic with Anomalies... |
| detect | Detect events in time series |
| examples_anomalies | Time series for anomaly detection |
| examples_changepoints | Time series for change point detection |
| examples_harbinger | Time series for event detection |
| examples_motifs | Time series for motif/discord discovery |
| gecco | GECCO Challenge 2018 – Water Quality Time Series |
| han_autoencoder | Anomaly detector using autoencoders |
| hanc_ml | Anomaly detector based on ML classification |
| hanct_dtw | Anomaly detector using DTW |
| hanct_kmeans | Anomaly detector using kmeans |
| hanr_arima | Anomaly detector using ARIMA |
| hanr_emd | Anomaly detector using EMD |
| hanr_fbiad | Anomaly detector using FBIAD |
| hanr_fft | Anomaly detector using FFT |
| hanr_fft_amoc | Anomaly Detector using FFT with AMOC Cutoff |
| hanr_fft_amoc_cusum | Anomaly Detector using FFT with AMOC and CUSUM Cutoff |
| hanr_fft_binseg | Anomaly Detector using FFT with Binary Segmentation Cutoff |
| hanr_fft_binseg_cusum | Anomaly Detector using FFT with BinSeg and CUSUM Cutoff |
| hanr_fft_sma | Anomaly Detector using Adaptive FFT and Moving Average |
| hanr_garch | Anomaly detector using GARCH |
| hanr_histogram | Anomaly detector using histograms |
| hanr_ml | Anomaly detector based on ML regression |
| hanr_remd | Anomaly detector using REMD |
| hanr_rtad | Anomaly and change point detector using RTAD |
| hanr_wavelet | Anomaly detector using Wavelets |
| harbinger | Harbinger |
| har_ensemble | Harbinger Ensemble |
| har_eval | Evaluation of event detection |
| har_eval_soft | Evaluation of event detection (SoftED) |
| har_plot | Plot event detection on a time series |
| harutils | Harbinger Utilities |
| hcp_amoc | At Most One Change (AMOC) |
| hcp_binseg | Binary Segmentation (BinSeg) |
| hcp_cf_arima | Change Finder using ARIMA |
| hcp_cf_ets | Change Finder using ETS |
| hcp_cf_lr | Change Finder using Linear Regression |
| hcp_chow | Chow Test (structural break) |
| hcp_garch | Change Finder using GARCH |
| hcp_gft | Generalized Fluctuation Test (GFT) |
| hcp_pelt | Pruned Exact Linear Time (PELT) |
| hcp_scp | Seminal change point |
| hdis_mp | Discord discovery using Matrix Profile |
| hdis_sax | Discord discovery using SAX |
| hmo_mp | Motif discovery using Matrix Profile |
| hmo_sax | Motif discovery using SAX |
| hmo_xsax | Motif discovery using XSAX |
| hmu_pca | Multivariate anomaly detector using PCA |
| loadfulldata | Load full dataset from mini data object |
| mas | Moving average smoothing |
| mit_bih_MLII | MIT-BIH Arrhythmia Database – MLII Lead |
| mit_bih_V1 | MIT-BIH Arrhythmia Database – V1 Lead |
| mit_bih_V2 | MIT-BIH Arrhythmia Database – V2 Lead |
| mit_bih_V5 | MIT-BIH Arrhythmia Database – V5 Lead |
| nab_artificialWithAnomaly | Numenta Anomaly Benchmark (NAB) – artificialWithAnomaly |
| nab_realAdExchange | Numenta Anomaly Benchmark (NAB) – realAdExchange |
| nab_realAWSCloudwatch | Numenta Anomaly Benchmark (NAB) realAWSCloudwatch |
| nab_realKnownCause | Numenta Anomaly Benchmark (NAB) realKnownCause |
| nab_realTraffic | Numenta Anomaly Benchmark (NAB) realTraffic |
| nab_realTweets | Numenta Anomaly Benchmark (NAB) realTweets |
| oil_3w_Type_1 | Oil Wells Dataset – Type 1 |
| oil_3w_Type_2 | Oil Wells Dataset – Type 2 |
| oil_3w_Type_4 | Oil Wells Dataset – Type 4 |
| oil_3w_Type_5 | Oil Wells Dataset – Type 5 |
| oil_3w_Type_6 | Oil Wells Dataset – Type 6 |
| oil_3w_Type_7 | Oil Wells Dataset – Type 7 |
| oil_3w_Type_8 | Oil Wells Dataset – Type 8 |
| trans_sax | SAX transformation |
| trans_xsax | XSAX transformation |
| ucr_ecg | UCR Anomaly Archive – ECG |
| ucr_int_bleeding | UCR Anomaly Archive – Internal Bleeding |
| ucr_nasa | UCR Anomaly Archive – NASA Spacecraft |
| ucr_power_demand | UCR Anomaly Archive – Italian Power Demand |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.