plot_hdpglm | R Documentation |
this function creates a plot with two grids. One is the grid with posterior expectation of betas as function of context-level covariates. The other is the posterior distribution of tau
plot_hdpglm(
samples,
X = NULL,
W = NULL,
ncol.taus = 1,
ncol.betas = NULL,
ncol.w = NULL,
nrow.w = NULL,
smooth.line = FALSE,
pred.pexp.beta = FALSE,
title.tau = NULL,
true.tau = NULL,
title.beta = NULL,
tau.x.axis.size = 1.1,
tau.y.axis.size = 1.1,
tau.title.size = 1.2,
tau.panel.title.size = 1.4,
tau.legend.size = 1,
beta.x.axis.size = 1.1,
beta.y.axis.size = 1.1,
beta.title.size = 1.2,
beta.panel.title.size = 1.4,
beta.legend.size = 1,
tau.xlab = NULL
)
samples |
an output of the function |
X |
a string vector with the name of the first-level covariates whose associated tau should be displayed |
W |
a string vector with the name of the context-level covariate(s) whose linear effect will be displayed. If |
ncol.taus |
integer with the number of columns of the grid containing the posterior distribution of tau |
ncol.betas |
integer with the number of columns of the posterior expectation of betas as function of context-level features |
ncol.w |
integer with the number of columns to use to display the different context-level covariates |
nrow.w |
integer with the number of rows to use to display the different context-level covariates |
smooth.line |
boolean, if |
pred.pexp.beta |
boolean, if |
title.tau |
string, the title for the posterior distribution of the context effects |
true.tau |
a |
title.beta |
string, the title for the posterior expectation of beta as function of context-level covariate |
tau.x.axis.size |
numeric, relative size of the x-axis of the plot with tau |
tau.y.axis.size |
numeric, relative size of the y-axis of the plot with tau |
tau.title.size |
numeric, relative size of the title of the plot with tau |
tau.panel.title.size |
numeric, relative size of the title of the panels of the plot with tau |
tau.legend.size |
numeric, relative size of the legend of the plot with tau |
beta.x.axis.size |
numeric, relative size of the x-axis of the plot with beta |
beta.y.axis.size |
numeric, relative size of the y-axis of the plot with beta |
beta.title.size |
numeric, relative size of the title of the plot with beta |
beta.panel.title.size |
numeric, relative size of the title of the panels of the plot with beta |
beta.legend.size |
numeric, relative size of the legend of the plot with beta |
tau.xlab |
string, the label of the x-axis for the plot with tau |
library(magrittr)
# Note: this example is just for illustration. MCMC iterations are very reduced
set.seed(10)
n = 20
data.context1 = tibble::tibble(x1 = rnorm(n, -3),
x2 = rnorm(n, 3),
z = sample(1:3, n, replace=TRUE),
y =I(z==1) * (3 + 4*x1 - x2 + rnorm(n)) +
I(z==2) * (3 + 2*x1 + x2 + rnorm(n)) +
I(z==3) * (3 - 4*x1 - x2 + rnorm(n)) ,
w = 20
)
data.context2 = tibble::tibble(x1 = rnorm(n, -3),
x2 = rnorm(n, 3),
z = sample(1:2, n, replace=TRUE),
y =I(z==1) * (1 + 3*x1 - 2*x2 + rnorm(n)) +
I(z==2) * (1 - 2*x1 + x2 + rnorm(n)),
w = 10
)
data = data.context1 %>%
dplyr::bind_rows(data.context2)
## estimation
mcmc = list(burn.in=1, n.iter=50)
samples = hdpGLM(y ~ x1 + x2, y ~ w, data=data, mcmc=mcmc, n.display=1)
plot_hdpglm(samples)
plot_hdpglm(samples, ncol.taus=2, ncol.betas=2, X='x1')
plot_hdpglm(samples, ncol.taus=2, ncol.betas=2, X='x1', ncol.w=2, nrow.w=1,
pred.pexp.beta=TRUE,smooth.line=TRUE )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.