R/initial-cluster.R

Defines functions initial_cluster

Documented in initial_cluster

#' initial clustering of the data set 
#'
#' Provides an initial clustering for a data of class \code{"hhsmmdata"} which 
#' determines the initial states and mixture components (if necessary) 
#' to be used for initial parameter and model estimation
#'
#' @author Morteza Amini, \email{morteza.amini@@ut.ac.ir}, Afarin Bayat,  \email{aftbayat@@gmail.com}
#'
#' @param train the train data set of class \code{"hhsmmdata"}, 
#' which can also contain missing data (NA or NaN)
#' @param nstate number of states 
#' @param nmix number of mixture components which is of one of the following forms:
#' \itemize{
#' \item a vector of positive (non-zero) integers of length \code{nstate}
#' \item a positive (non-zero) integer 
#' \item the text \code{"auto"}: the number of mixture components will be determined 
#' automatically based on the within cluster sum of squares 
#' \item NULL if no mixture distribution is not considered as the emission. This option is 
#' usefull for the nonparametric emission distribution (\code{nonpar_mstep} and \code{dnonpar})
#' }
#' @param ltr logical. if TRUE a left to right hidden hybrid Markov/semi-Markov model is assumed
#' @param final.absorb logical. if TRUE the final state of the sequence is assumed to be the absorbance state
#' @param verbose logical. if TRUE the outputs will be printed 
#' @param equispace logical. if TRUE the left to right clustering will be performed simply with equal time spaces. 
#' This option is suitable for speech recognition applications
#' @param regress logical. if TRUE the linear regression clustering will be performed
#' @param resp.ind the column indices of the response variables for the linear regression clustering approach. The 
#' default is 1, which means that the first column is the univariate response variable
#'
#' @return a list containing the following items:
#' \itemize{
#' \item \code{clust.X} a list of clustered observations for each sequence and state
#' \item \code{mix.clus} a list of the clusters for the mixtures for each state
#' \item \code{state.clus} the exact state clusters of each observation (available if \code{ltr}=FALSE)
#' \item \code{nmix} the number of mixture components (a vector of positive (non-zero) integers of length \code{nstate})
#' \item \code{ltr} logical. if TRUE a left to right hidden hybrid Markov/semi-Markov model is assumed
#' \item \code{final.absorb} logical. if TRUE the final state of the sequence is assumed to be the absorbance state
#' \item \code{miss} logical. if TRUE the \code{train$x} matrix contains missing 
#' data (NA or NaN)
#' }
#'
#' @details In reliability applications, the hhsmm models are often left-to-right
#' and the modeling aims to predict the future states. In such cases, the
#' \code{ltr}=TRUE and \code{final.absorb}=TRUE should be set. 
#'
#' @examples
#' J <- 3
#' initial <- c(1, 0, 0)
#' semi <- c(FALSE, TRUE, FALSE)
#' P <- matrix(c(0.8, 0.1, 0.1, 0.5, 0, 0.5, 0.1, 0.2, 0.7), nrow = J, 
#' byrow = TRUE)
#' par <- list(mu = list(list(7, 8), list(10, 9, 11), list(12, 14)),
#' sigma = list(list(3.8, 4.9), list(4.3, 4.2, 5.4), list(4.5, 6.1)),
#' mix.p = list(c(0.3, 0.7), c(0.2, 0.3, 0.5), c(0.5, 0.5)))
#' sojourn <- list(shape = c(0, 3, 0), scale = c(0, 10, 0), type = "gamma")
#' model <- hhsmmspec(init = initial, transition = P, parms.emis = par,
#' dens.emis = dmixmvnorm, sojourn = sojourn, semi = semi)
#' train <- simulate(model, nsim = c(10, 8, 8, 18), seed = 1234, 
#' remission = rmixmvnorm)
#' clus = initial_cluster(train, nstate = 3, nmix = c(2 ,2, 2),ltr = FALSE,
#' final.absorb = FALSE, verbose = TRUE)
#'
#' @importFrom mice mice complete
#' @importFrom progress progress_bar
#'
#' @export
#'
initial_cluster <- function(train, nstate, nmix, ltr = FALSE, 
	equispace = FALSE, final.absorb = FALSE, verbose = FALSE,
	regress = FALSE, resp.ind = 1)
{
		if(length(nmix)==1 & mode(nmix)=="numeric") nmix = rep(nmix,nstate)
		if(length(nmix)!=nstate & mode(nmix)=="numeric") stop("length of nmix must be 1 or equal the number of states.")
		if(!inherits(train, "hhsmmdata")) stop("class of train data must be hhsmmdata !")
		if(equispace & !ltr) stop("equispace option is only applied for left to right model (ltr=TRUE)!")
		if(!ltr & final.absorb){
			final.absorb = FALSE
			warning("The final.absorb is for left to right case only! Changed to FALSE...")
		}
		Tx = list()
		data = as.matrix(train$x)
		miss = FALSE
		if(anyNA(data) | any(is.nan(data))){
			miss = TRUE
			allmiss = which(apply(data,1,function(t) all(is.na(t)|is.nan(t))))
			notallmiss = which(!apply(data,1,function(t) all(is.na(t)|is.nan(t))))
			for(ii in allmiss){
				neigh = notallmiss[order(abs(ii-notallmiss))[1:2]]
				data[ii,] = (data[neigh[1],]+data[neigh[2],])/2
			}
			if(ncol(data)>1) data = complete(mice(data,printFlag=FALSE))
		}
		data = as.matrix(data)
		num.units= length(train$N)
		for(j in 1:nstate){
			Tx[[j]] = matrix(0,nrow = 1,ncol=ncol(data))
		}# for j
		Ns = c(0,cumsum(train$N))
		xt = list()
		if(verbose) cat("Within sequence clustering ... \n")
		if(ltr){
			clusters = NULL
		} else {
			clusters = list()
		}
		if(equispace){
			for(m in 1:num.units){
				xt[[m]] = list()
				C=as.matrix(data[(Ns[m]+1):Ns[m+1],])
				if(final.absorb) D= as.matrix(C[-nrow(C),]) else D = C
				T = nrow(D)
				K = nstate-final.absorb
				clus = c(rep(1,T-K*trunc(T/K)),rep(1:K,each=trunc(T/K)))
				for(j in 1:(nstate-final.absorb)){
  					if(sum(clus==j)>0){
						xt[[m]][[j]]=matrix(D[clus==j,],
							nrow=sum(clus==j),ncol=ncol(D))
						colnames(xt[[m]][[j]]) <- colnames(train$x)
						Tx[[j]]= rbind(Tx[[j]],xt[[m]][[j]])
						colnames(Tx[[j]]) <- colnames(train$x)
					} else{
						xt[[m]][[j]] = NA
					}#if else
				}# for j
				if(final.absorb){
					Tx[[nstate]]=rbind(Tx[[nstate]],C[nrow(C),])
					colnames(Tx[[nstate]]) <- colnames(train$x)
					xt[[m]][[nstate]]=matrix(C[nrow(C),],
							nrow=1,ncol=ncol(D))	
					colnames(xt[[m]][[nstate]]) <- colnames(train$x)
				}
			}# for m 
		}else{
			if(ltr){
				pb <- progress_bar$new(
					format = " clustering [:bar] :percent in :elapsed",
					total = num.units, clear = FALSE, width= 60)
				for(m in 1:num.units){
					xt[[m]] = list()
					if(verbose) pb$tick()
					C=as.matrix(data[(Ns[m]+1):Ns[m+1],])
					if(final.absorb) D = as.matrix(C[-nrow(C),]) else D = C
					if(regress){
						clus = ltr_reg_clus(D,nstate-final.absorb,resp.ind=resp.ind)
					}else clus = ltr_clus(D,nstate-final.absorb)
					for(j in 1:(nstate-final.absorb)){
  						if(sum(clus==j)>0){
							xt[[m]][[j]]=matrix(D[clus==j,],
								nrow=sum(clus==j),ncol=ncol(D))
							colnames(xt[[m]][[j]]) <- colnames(train$x)
							Tx[[j]]= rbind(Tx[[j]],xt[[m]][[j]])
							colnames(Tx[[j]]) <- colnames(train$x)
						} else{
							xt[[m]][[j]] = NA
						}#if else
					}# for j
					if(final.absorb){
						Tx[[nstate]]=rbind(Tx[[nstate]],C[nrow(C),])
						colnames(Tx[[nstate]]) <- colnames(train$x)
						xt[[m]][[nstate]]=matrix(C[nrow(C),],
								nrow=1,ncol=ncol(D))	
						colnames(xt[[m]][[nstate]]) <- colnames(train$x)
					}
				}# for m 
			} else{
					if(regress){
						clus = .kregs(data,nstate,nstart=10,resp.ind=resp.ind,verbose=verbose)$cluster
					}else clus = kmeans(data,nstate,nstart=10)$cluster
					if(.discret.check(data,nstate) == 1) warning("number of clusters for finite domain categorical
								data is equal to the number of categories! 
								This will cause an unreliable initail clustering!")
					if(.discret.check(data,nstate) == 2) stop("number of clusters for finite domain categorical
								data is larger than the number of categories! 
								Initail clustering is impossible!")
					for(m in 1:num.units){
						clusters[[m]] = clus[(Ns[m]+1):Ns[m+1]]
						xt[[m]] = list()
						D = as.matrix(data[(Ns[m]+1):Ns[m+1],])
						for(j in 1:nstate){
							xt[[m]][[j]]=matrix(D[clusters[[m]]==j,],
								nrow=sum(clusters[[m]]==j),ncol=ncol(data))
							Tx[[j]]= rbind(Tx[[j]],xt[[m]][[j]])
							colnames(Tx[[j]]) <- colnames(train$x)
						}# for j
					}# for m 
			}# if else ltr
		}# if else equispace
		for(j in 1:nstate) Tx[[j]] = as.matrix(Tx[[j]][-1,])
		if(!is.null(nmix)){
			anmix = c()
			mix.clus = list()
			for(j in 1:nstate){
				if(verbose) cat("State ",j,"\n")
				if(verbose) cat("Between sequence clustering ... \n")
				if(length(nmix)==1){ if(nmix=="auto"){
					if(verbose) cat("Automatic determination of the number of mixture components ... \n")
					continue = TRUE
					DW = Inf
					oldW = (nrow(Tx[[j]])-1)*sum(apply(Tx[[j]],2,var))
					cntr = 0
					eps = 1e-2
					anmix[j] = 1
					while(continue & (cntr+1) < (nrow(Tx[[j]])*0.5) ){
						cntr = cntr + 1
						if(regress){
							tmpclus = .kregs(Tx[[j]],cntr+1,nstart=10,resp.ind=resp.ind,verbose=verbose)
						}else   tmpclus = kmeans(Tx[[j]],cntr+1,nstart=10)
						newW = sum(tmpclus$withinss)
						DW = c(DW,oldW - newW)
						oldW = newW
						if(cntr>2){
							DDW = -diff(DW)/DW[-1]
							DDDW = -diff(DDW)
							if(any(DDDW<=0) | cntr > 10){
								anmix[j] = which.max(DDW[-1]) + 2
								continue = FALSE
							}# if 
						}# if 
					}# while
					if(regress){
						mix.clus[[j]] = .kregs(Tx[[j]],anmix[j],nstart=10,resp.ind=resp.ind,verbose=verbose)$cluster
					}else mix.clus[[j]] = kmeans(Tx[[j]],anmix[j],nstart=10)$cluster	
				}# if 
			} else {
				if(regress){
					mix.clus[[j]] = .kregs(Tx[[j]],nmix[j],nstart=10,resp.ind=resp.ind,verbose=verbose)$cluster
				}else mix.clus[[j]] = kmeans(Tx[[j]],nmix[j],nstart=10)$cluster	
				anmix[j] = nmix[j]
			}# if else 
		}# for j
	}else{
		mix.clus = NULL
		anmix = NULL
	}#if not null nmix
	out = list(clust.X=xt, mix.clus=mix.clus, state.clus = clusters, 
		nmix=anmix, ltr = ltr, final.absorb = final.absorb, miss = miss)
	return(out)
}

Try the hhsmm package in your browser

Any scripts or data that you put into this service are public.

hhsmm documentation built on Sept. 11, 2024, 7:34 p.m.