Nothing
#' @name mc_linear_hypothesis
#'
#' @author Lineu Alberto Cavazani de Freitas,
#' \email{lineuacf@@gmail.com}
#'
#' @export
#'
#' @import mcglm
#' @import Matrix
#'
#' @importFrom stats as.formula binomial coef dist fitted glm make.link
#' model.frame model.matrix na.exclude pchisq qchisq qnorm pnorm quasi
#' residuals vcov model.response terms p.adjust
#'
#' @title Test Linear Hypothesis
#'
#' @description Performs Wald tests for testing a linear hypothesis for
#' model objects produced by mcglm.
#'
#' @param object An object of \code{mcglm} class.
#'
#' @param hypothesis A vector of strings with the hypotheses to be
#' tested.
#'
#' @param verbose a logical if TRUE print some information about the
#' tests performed. Default verbose = TRUE.
#'
#' @return Table result of the hypothesis test specified.
#'
#' @examples
#'
#' library(mcglm)
#' library(Matrix)
#' library(htmcglm)
#'
#' data("soya", package = "mcglm")
#'
#' form.grain <- grain ~ water * pot
#' form.seed <- seeds ~ water * pot
#'
#' soya$viablepeasP <- soya$viablepeas / soya$totalpeas
#' form.peas <- viablepeasP ~ water * pot
#'
#' Z0 <- mc_id(soya)
#' Z1 <- mc_mixed(~0 + factor(block), data = soya)
#'
#' fit_joint <- mcglm(linear_pred = c(form.grain,
#' form.seed,
#' form.peas),
#' matrix_pred = list(c(Z0, Z1),
#' c(Z0, Z1),
#' c(Z0, Z1)),
#' link = c("identity",
#' "log",
#' "logit"),
#' variance = c("constant",
#' "tweedie",
#' "binomialP"),
#' Ntrial = list(NULL,
#' NULL,
#' soya$totalpeas),
#' power_fixed = c(TRUE,TRUE,TRUE),
#' data = soya)
#'
#' mc_linear_hypothesis(object = fit_joint,
#' hypothesis = c('beta11 = 0'))
#'
#' mc_linear_hypothesis(object = fit_joint,
#' hypothesis = c('beta11 = 0',
#' 'beta12 = 0'))
#'
#' mc_linear_hypothesis(object = fit_joint,
#' hypothesis = c('beta11 = 0',
#' 'beta12 = 0',
#' 'beta21 = 0',
#' 'beta22 = 0',
#' 'beta31 = 0',
#' 'beta32 = 0'))
#'
#' mc_linear_hypothesis(object = fit_joint,
#' hypothesis = c('beta11 = beta21'))
#'
#' mc_linear_hypothesis(object = fit_joint,
#' hypothesis = c('tau11 = 0'))
#'
#' mc_linear_hypothesis(object = fit_joint,
#' hypothesis = c('tau11 = 0',
#' 'tau21 = 0',
#' 'tau31 = 0'))
#'
#' mc_linear_hypothesis(object = fit_joint,
#' hypothesis = c('tau12 = tau22'))
mc_linear_hypothesis <- function(object, hypothesis, verbose = TRUE){
# Vetor beta chapeu
coefs <- coef(object, type = c("beta", "tau", "power"))
#----------------------------------------------------------------
# Número de parametros
n_coefs <- sum(as.vector(table(coefs$Response)))
#----------------------------------------------------------------
# Número de respostas
n_resp <- length(as.vector(table(coefs$Response)))
#----------------------------------------------------------------
# vcov
vcov_coefs <- vcov(object)[as.vector(coefs$Parameters),
as.vector(coefs$Parameters)]
#----------------------------------------------------------------
# Quebrando as strings recebidas como argumento (hipóteses)
hypothesis2 <- stringr::str_split(hypothesis,
pattern = c('='),
simplify = T)
#----------------------------------------------------------------
# Gerando um data frame
hypothesis3 <- as.data.frame(hypothesis2)
names(hypothesis3) <- c('parameters', 'null_hyp')
#----------------------------------------------------------------
# Retirando espaços
hypothesis3$parameters <- stringr::str_replace(
hypothesis3$parameters, " ", "")
hypothesis3$null_hyp <- stringr::str_replace(
hypothesis3$null_hyp, " ", "")
#----------------------------------------------------------------
if(sum(hypothesis3$parameters %in% coefs$Parameters) !=
length(hypothesis3$parameters)) stop("You specified hypothesis about parameters that does not exist in the model.")
#----------------------------------------------------------------
# Gerando a matriz L
L_user <- matrix(nrow = nrow(hypothesis3), ncol = n_coefs)
colnames(L_user) <- as.vector(coefs$Parameters)
for (i in 1:nrow(L_user)) {
L_user[i,] <- ifelse(colnames(L_user) == hypothesis3$parameters[i],
1,0)
}
for (i in 1:nrow(L_user)) {
L_user[i,] <- ifelse(colnames(L_user) == hypothesis3$null_hyp[i],
-1,L_user[i,])
}
#----------------------------------------------------------------
# Substitui strings por 0 (hipóteses de igualdade)
hypothesis3$null_hyp <- ifelse(stringr::str_detect(
hypothesis3$null_hyp, c('beta')) == T,0,hypothesis3$null_hyp)
hypothesis3$null_hyp <- ifelse(stringr::str_detect(
hypothesis3$null_hyp, c('tau')) == T,0,hypothesis3$null_hyp)
hypothesis3$null_hyp <- ifelse(stringr::str_detect(
hypothesis3$null_hyp, c('power')) == T,0,hypothesis3$null_hyp)
#----------------------------------------------------------------
# Converte valores da hipótese nula para numericas
hypothesis3$null_hyp <- as.numeric(hypothesis3$null_hyp)
#----------------------------------------------------------------
# Efetua o teste
W <- vector() # Vetor para a estatística de teste
gl <- vector() # Vetor para graus de liberdade
p_val <- vector() # Vetor para p-valor
W <- as.numeric((t((L_user%*%coefs$Estimates) - hypothesis3$null_hyp))
%*% (solve(L_user%*%vcov_coefs%*%t(L_user))) %*%
((L_user%*%coefs$Estimates) - hypothesis3$null_hyp))
gl <- nrow(L_user)
p_val <- pchisq(W, df = gl, lower.tail = FALSE)
tabela <- data.frame(Df = gl,
Chi = round(W, 4),
'Pr(>Chi)' = round(p_val, 4),
check.names = F)
#----------------------------------------------------------------
if (verbose == TRUE) {
cat("Linear hypothesis test")
cat("\n\n")
cat("Hypothesis:")
print_hyp <- as.data.frame(hypothesis)
names(print_hyp) <- NULL
print(print_hyp)
cat("\n")
cat("Results:\n")
print(tabela)
cat("\n")
return(invisible(tabela))
} else {
return(tabela)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.