Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
library(hydrotoolbox)
## ----read_fun, eval=FALSE, fig.width = 6, fig.height = 4----------------------
# # set path to file
# path_file <- system.file('extdata', 'snih_qd_guido.xlsx', package = 'hydrotoolbox')
#
# # read daily mean streamflow with default column name
# guido_qd <- read_snih(path = path_file, by = 'day')
#
# head(guido_qd)
#
# # now we use the function with column name
# rm(guido_qd)
# guido_qd <- read_snih(path = path_file, by = 'day',
# out_name = 'qd(m3/s)')
#
# head(guido_qd)
#
# # plot the series
# plot(x = guido_qd[ , 1], y = guido_qd[ , 2], type = 'l',
# main = 'Daily mean streamflow at Guido (Mendoza basin)',
# xlab = 'Date', ylab = 'Q(m3/s)', col = 'dodgerblue', lwd = 1,
# ylim = c(0, 200))
## ----build, eval=FALSE, fig.width = 6, fig.height = 4-------------------------
# # in this path you will find the raw example data
# path <- system.file('extdata', package = 'hydrotoolbox')
#
# list.files(path)
#
# # we load in a single object (hydromet_station class)
# # the streamflow and water height series
# guido <-
# hm_create() %>% # create the met-station
# hm_build_generic(path = path,
# file_name = c('snih_qd_guido.xlsx'),
# slot_name = c('qd'),
# FUN = read_excel,
# by = c('day'),
# sheet = 1L
# )
#
# # we can explore the data-set inside it by using hm_show
# guido %>% hm_show()
#
# # you can also rename the column names
# guido <-
# guido %>%
# hm_name(slot_name = 'qd',
# col_name = 'q(m3/s)')
#
# guido %>% hm_show(slot_name = 'qd')
## ----plot_1, eval=FALSE, fig.width = 6, fig.height = 4, warning = FALSE-------
# # we ask hydrotolkit to show all the variables
# # with data in our station
# guido %>% hm_show()
#
# # if want to analyze the daily mean streamflow records
# guido %>%
# hm_plot(slot_name = 'qd',
# col_name = list('q(m3/s)'),
# interactive = TRUE,
# line_color = 'dodgerblue',
# x_lab = 'Date', y_lab = 'Q(m3/s)' )
## ----plot_2, eval=FALSE, fig.width = 6, fig.height = 4, warning = FALSE-------
# # just show the discharge for the hydrological year 2016/2017
# # for publishing
# guido %>%
# hm_plot(slot_name = 'qd',
# col_name = list('q(m3/s)'),
# interactive = FALSE,
# line_color = 'dodgerblue',
# x_lab = 'Date', y_lab = 'Q(m3/s)',
# from = '2016-07-01', to = '2017-06-30',
# legend_lab = 'Guido station',
# title_lab = 'Daily mean discharge' )
## ----show, eval=FALSE, fig.width = 6, fig.height = 4, warning = FALSE---------
# # the show method allows to get an idea about the stored variables
# guido %>%
# hm_show()
#
# # or maybe we want to specify the slots
# guido %>%
# hm_show(slot_name = c('id', 'qd', 'tair') )
## ----report, eval=FALSE, fig.width = 6, fig.height = 4, warning = FALSE-------
# # suppose that to get an idea about the basic statistics of our data
# # and we want to know how many missing data we have
# guido %>%
# hm_report(slot_name = 'qd')
## ----get, eval=FALSE, fig.width = 6, fig.height = 4, warning = FALSE----------
# # now you want to extract the table
# guido %>%
# hm_get(slot_name = 'qd') %>%
# head()
## ----mutate, eval=FALSE, eval=FALSE, fig.width = 6, fig.height = 4, warning = FALSE----
# # apply a moving average windows to streamflow records
# guido %>%
# hm_mutate(slot_name = 'qd',
# FUN = mov_avg, k = 10,
# pos = 'c', out_name = 'mov_avg') %>% # see ?mov_avg()
# hm_plot(slot_name = 'qd',
# col_name = list(c('q(m3/s)', 'mov_avg') ),
# interactive = TRUE,
# line_color = c('dodgerblue', 'red3'),
# y_lab = 'Q(m3/s)',
# legend_lab = c('obs', 'mov_avg') )
## ----melt, eval=FALSE, fig.width = 6, fig.height = 4, warning = FALSE---------
# # lets say that we want to put together snow water equivalent from Toscas (dgi)
# # and daily streamflow discharge from Guido (snih)
#
# # on the first place we build the Toscas station
# # dgi file
# toscas <-
# hm_create() %>%
# hm_build_generic(path = path,
# file_name = 'dgi_toscas.xlsx',
# slot_name = c('swe', 'tmax',
# 'tmin', 'tmean',
# 'rh', 'patm'),
# by = 'day',
# FUN = read_dgi,
# sheet = 1L:6L )
#
# # now we melt the required data in a new object
# hm_create(class_name = 'compact') %>%
# hm_melt(melt = c('toscas', 'guido'),
# slot_name = list(toscas = 'swe', guido = 'qd'),
# col_name = 'all',
# out_name = c('swe(mm)', 'qd(m3/s)')
# ) %>%
# hm_plot(slot_name = 'compact',
# col_name = list( c('swe(mm)', 'qd(m3/s)') ),
# interactive = TRUE,
# legend_lab = c('swe-Toscas', 'qd-Guido'),
# line_color = c('dodgerblue', 'red'),
# y_lab = c('q(m3/s)', 'swe(mm)'),
# dual_yaxis = c('right', 'left')
# )
## ----quality-flag, eval=FALSE, fig.width = 6, fig.height = 4, warning = FALSE----
# # we are going to add come quality-flags to the data
# library(tibble)
#
# my_station <- hm_create(class_name = "station")
#
# my_tb <-
# tibble(
# date = seq.POSIXt(from = ISOdate(2022, 1, 1, 0, 0, 0),
# to = ISOdate(2022, 1, 1, 23, 0, 0),
# by = "hour" ),
# random_var = runif(n = 24, min = 0, max = 10),
# unit = "my_units",
# quality_flag = c(rep("good", 20), rep("bad", 4))
# )
#
# my_station <-
# my_station %>%
# hm_set(unvar = my_tb)
#
# my_station %>% hm_show()
#
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.