Nothing
NRI.cm<-function(comm, dis, meta.group=NULL, meta.spool=NULL,
nworker=4, memo.size.GB=50,
weighted=c(TRUE,FALSE), check.name=TRUE,
rand=1000,output.MPD=c(FALSE,TRUE),silent=FALSE,
sig.index=c("SES","NRI","Confidence","RC","all"))
{
if(.Platform$OS.type=="windows")
{
if(utils::memory.limit()<memo.size.GB*1024)
{
memotry=try(utils::memory.limit(size=memo.size.GB*1024),silent = TRUE)
if(inherits(memotry,"try-error")){warning(memotry[1])}
}
}
weighted=weighted[1]
output.MPD=output.MPD[1]
if(!(sig.index[1] %in% c("SES","NRI","Confidence","RC","all"))){stop("wrong sig.index for NRI.p.")}
# match
if(check.name)
{
spc=iCAMP::match.name(cn.list=list(comm=comm),both.list=list(dis=dis))
comm=spc$comm
#dis=spc$dis
}
####################
## match IDs
if(!is.null(meta.group))
{
sampc=iCAMP::match.name(rn.list = list(comm=comm,meta.group=meta.group))
comm=sampc$comm
meta.group=sampc$meta.group
meta.lev=unique(meta.group[,1])
}else{
meta.group=data.frame(metagrp=rep("Meta",nrow(comm)),stringsAsFactors = FALSE)
rownames(meta.group)=rownames(comm)
meta.lev="Meta"
}
comms=lapply(meta.lev,function(mi){sampi=rownames(meta.group)[which(meta.group[,1]==mi)];comi=comm[which(rownames(comm) %in% sampi),,drop=FALSE];comi[,colSums(comi)>0,drop=FALSE]})
names(comms)=meta.lev
if(!is.null(meta.spool))
{
if(!is.list(meta.spool))
{
if(length(meta.lev)>1){stop('meta.spool needs to specify species pool for each metacommunity in meta.group.')}
meta.spool=list(Meta=meta.spool)
}
if(sum(!(unique(unlist(meta.spool)) %in% rownames(dis)))>0){stop('meta.spool has some species not included in dis.')}
if(sum(!(meta.lev %in% names(meta.spool)))>0)
{
stop('meta.spool element names must be the same as metacommunity names in meta.group.')
}else{
meta.spool=meta.spool[match(meta.lev,names(meta.spool))]
}
msplen=sapply(meta.spool,length)
mgplen=sapply(comms,ncol)
if(sum((msplen-mgplen)<0)>0){stop('meta.spool shouldnot have less species than observed species in a metacommunity.')}
}else{
meta.spool=lapply(1:length(comms),function(i){colnames(comms[[i]])})
names(meta.spool)=names(comms)
}
meta.spall=unique(unlist(meta.spool))
## randomization function ##
sp.num=ncol(comm)
MPD.random<-function(i,dis,comms,weighted,
meta.group,meta.spool,meta.spall)
{
requireNamespace("iCAMP")
comr=matrix(0,nrow=nrow(meta.group),ncol=length(meta.spall))
rownames(comr)=rownames(meta.group)
colnames(comr)=meta.spall
for(j in 1:length(meta.spool))
{
comj=comms[[j]]
if(ncol(comj)>0)
{
spj.rd=sample(meta.spool[[j]],ncol(comj))
comr[match(rownames(comj),rownames(comr)),match(spj.rd,colnames(comr))]=comj
}
}
comr=comr[,colSums(comr)>0,drop=FALSE]
MPD.rand<-as.matrix(iCAMP::mpdn(comr, dis, abundance.weighted = weighted))
MPD.rand
}
# calculate across all samples #
if(!silent){message("Now calculating observed MPD. Begin at ", date(),". Please wait...")}
MPD.obs<-as.matrix(iCAMP::mpdn(comm, dis, abundance.weighted = weighted)) # calculate observed MPD.
spname=colnames(comm)
gc()
if(nworker==1)
{
MPD.rand=lapply(1:rand,MPD.random,diss=dis,com=comm,weighted=weighted)
}else{
requireNamespace("parallel")
c1<-try(parallel::makeCluster(nworker,type="PSOCK"))
if(inherits(c1,"try-error")){c1 <- try(parallel::makeCluster(nworker, setup_timeout = 0.5))}
if(inherits(c1,"try-error")){c1 <- parallel::makeCluster(nworker, setup_strategy = "sequential")}
if(!silent){message("Now randomizing by parallel computing. Begin at ", date(),". Please wait...")}
MPD.rand<-parallel::parLapply(c1,1:rand,MPD.random,dis,comms,weighted,
meta.group,meta.spool,meta.spall)
parallel::stopCluster(c1)
gc()
}
MPD.rand<-array(unlist(MPD.rand),dim=c(nrow(MPD.rand[[1]]),ncol(MPD.rand[[1]]),length(MPD.rand)))
if(output.MPD)
{
MPDrandm=matrix(MPD.rand,nrow = dim(MPD.rand)[1],ncol = dim(MPD.rand)[3])
rownames(MPDrandm)=rownames(MPD.obs)
colnames(MPDrandm)=paste0("rand",1:ncol(MPDrandm))
}
if(sig.index[1] %in% c("SES","NRI","all"))
{
NRI=(apply(MPD.rand,c(1,2),mean)-MPD.obs)/(apply(MPD.rand,c(1,2),stats::sd))
NRI[is.na(NRI)]=0
}
if(sig.index[1] %in% c("Confidence","all"))
{
MPD.obsar=array(MPD.obs,dim=dim(MPD.rand))
alpha=(apply(MPD.obsar>MPD.rand,c(1,2),sum))/rand
alpha2=(apply(MPD.obsar<MPD.rand,c(1,2),sum))/rand
alpha[which(alpha2>alpha, arr.ind = TRUE)]=-alpha2[which(alpha2>alpha, arr.ind = TRUE)]
alpha[is.na(alpha)]=0
rownames(alpha)=rownames(MPD.obs)
}
if(sig.index[1] %in% c("RC","all"))
{
MPD.obsar=array(MPD.obs,dim=dim(MPD.rand))
alphax=(apply(MPD.obsar>MPD.rand,c(1,2),sum))/rand
alphax2=(apply(MPD.obsar==MPD.rand,c(1,2),sum))/rand
alphax=(alphax+0.5*alphax2)
RC=2*alphax-1
}
if(sig.index[1] %in% c("SES","NRI"))
{
if(output.MPD)
{
output=list(index=data.frame(NRI=NRI,stringsAsFactors = FALSE),
MPD.obs=data.frame(MPD=MPD.obs),MPD.rand=MPDrandm)
}else{
output=data.frame(NRI=NRI,stringsAsFactors = FALSE)
}
}else if(sig.index[1]=="Confidence"){
if(output.MPD)
{
output=list(index=data.frame(CMPD=alpha,stringsAsFactors = FALSE),
MPD.obs=data.frame(MPD=MPD.obs),MPD.rand=MPDrandm)
}else{output=data.frame(CMPD=alpha,stringsAsFactors = FALSE)}
}else if(sig.index[1]=="RC"){
if(output.MPD)
{
output=list(index=data.frame(RCMPD=RC,stringsAsFactors = FALSE),
MPD.obs=data.frame(MPD=MPD.obs),MPD.rand=MPDrandm)
}else{output=data.frame(RCMPD=RC,stringsAsFactors = FALSE)}
}else if(sig.index[1]=="all"){
if(output.MPD)
{
output=list(SES=data.frame(NRI=NRI,stringsAsFactors = FALSE),
Confidence=data.frame(CMPD=alpha,stringsAsFactors = FALSE),
RC=data.frame(RCMPD=RC,stringsAsFactors = FALSE),
MPD.obs=data.frame(MPD=MPD.obs),MPD.rand=MPDrandm)
}else{
output=list(SES=data.frame(NRI=NRI,stringsAsFactors = FALSE),
Confidence=data.frame(CMPD=alpha,stringsAsFactors = FALSE),
RC=data.frame(RCMPD=RC,stringsAsFactors = FALSE))
}
}
output
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.