Nothing
NTI.p<-function(comm, dis, nworker=4, memo.size.GB=50,
weighted=c(TRUE,FALSE),rand=1000,
check.name=TRUE,output.MNTD=c(FALSE,TRUE),
sig.index=c("SES","NTI","Confidence","RC","all"),silent=FALSE)
{
if(.Platform$OS.type=="windows")
{
if(utils::memory.limit()<memo.size.GB*1024)
{
memotry=try(utils::memory.limit(size=memo.size.GB*1024),silent = TRUE)
if(inherits(memotry,"try-error")){warning(memotry[1])}
}
}
weighted=weighted[1]
output.MNTD=output.MNTD[1]
if(!(sig.index[1] %in% c("SES","NTI","Confidence","RC","all"))){stop("wrong sig.index for NTI.p.")}
# match
if(check.name)
{
spc=iCAMP::match.name(cn.list=list(comm=comm),both.list=list(dis=dis))
comm=spc$comm
dis=spc$dis
}
## randomization function ##
requireNamespace("permute")
sp.num=ncol(comm)
permat=permute::shuffleSet(sp.num,rand)
if(nrow(permat)<rand)
{
permat=rbind(permat,1:sp.num)
if(!silent){message("total possible permutation number is ",nrow(permat),", less than random time setting.")}
rand=nrow(permat)
}
permat=lapply(1:nrow(permat), function(i,per){per[i,]},per=permat)
gc()
MNTD.random<-function(permati,diss,com,weighted)
{
requireNamespace("iCAMP")
diss.rand=diss
rand.name=colnames(diss)[permati]
colnames(diss.rand)=rand.name
rownames(diss.rand)=rand.name
gc()
MNTD.rand<-as.matrix(iCAMP::mntdn(com, diss.rand, abundance.weighted = weighted))
MNTD.rand
}
# calculate across all samples #
if(!silent){message("Now calculating observed MNTD. Begin at ", date(),". Please wait...")}
MNTD.obs<-as.matrix(iCAMP::mntdn(comm=comm, pd=dis, abundance.weighted = weighted)) # calculate observed MNTD.
gc()
requireNamespace("parallel")
c1<-try(parallel::makeCluster(nworker,type="PSOCK"))
if(inherits(c1,"try-error")){c1 <- try(parallel::makeCluster(nworker, setup_timeout = 0.5))}
if(inherits(c1,"try-error")){c1 <- parallel::makeCluster(nworker, setup_strategy = "sequential")}
if(!silent){message("Now randomizing by parallel computing. Begin at ", date(),". Please wait...")}
MNTD.rand<-parallel::parLapply(c1,permat,MNTD.random,diss=dis,com=comm,weighted=weighted)
parallel::stopCluster(c1)
MNTD.rand<-array(unlist(MNTD.rand),dim=c(nrow(MNTD.rand[[1]]),ncol(MNTD.rand[[1]]),length(MNTD.rand)))
gc()
rownames(MNTD.rand)=rownames(MNTD.obs)
if(output.MNTD)
{
MNTDrandm=matrix(MNTD.rand,nrow = dim(MNTD.rand)[1],ncol = dim(MNTD.rand)[3])
rownames(MNTDrandm)=rownames(MNTD.obs)
colnames(MNTDrandm)=paste0("rand",1:ncol(MNTDrandm))
}
if(sig.index[1] %in% c("SES","NTI", "all"))
{
NTI=(apply(MNTD.rand,c(1,2),mean)-MNTD.obs)/(apply(MNTD.rand,c(1,2),stats::sd))
NTI[is.na(NTI)]=0
}
if(sig.index[1] %in% c("Confidence","all"))
{
MNTD.obsar=array(MNTD.obs,dim=dim(MNTD.rand))
alpha=(apply(MNTD.obsar>MNTD.rand,c(1,2),sum))/rand
alpha2=(apply(MNTD.obsar<MNTD.rand,c(1,2),sum))/rand
alpha[which(alpha2>alpha, arr.ind = TRUE)]=-alpha2[which(alpha2>alpha, arr.ind = TRUE)]
alpha[is.na(alpha)]=0
rownames(alpha)=rownames(MNTD.obs)
}
if(sig.index[1] %in% c("RC","all"))
{
MNTD.obsar=array(MNTD.obs,dim=dim(MNTD.rand))
alphax=(apply(MNTD.obsar>MNTD.rand,c(1,2),sum))/rand
alphax2=(apply(MNTD.obsar==MNTD.rand,c(1,2),sum))/rand
alphax=(alphax+0.5*alphax2)
RC=2*alphax-1
}
if(sig.index[1] %in% c("SES","NTI"))
{
if(output.MNTD)
{
output=list(index=data.frame(NTI=NTI,stringsAsFactors = FALSE),
MNTD.obs=data.frame(MNTD=MNTD.obs),MNTD.rand=MNTDrandm)
}else{output=data.frame(NTI=NTI,stringsAsFactors = FALSE)}
}else if(sig.index[1] == "Confidence"){
if(output.MNTD)
{
output=list(index=data.frame(CMNTD=alpha,stringsAsFactors = FALSE),
MNTD.obs=data.frame(MNTD=MNTD.obs),MNTD.rand=MNTDrandm)
}else{output=data.frame(CMNTD=alpha,stringsAsFactors = FALSE)}
}else if(sig.index[1] == "RC"){
if(output.MNTD)
{
output=list(index=data.frame(RCMNTD=RC,stringsAsFactors = FALSE),
MNTD.obs=data.frame(MNTD=MNTD.obs),MNTD.rand=MNTDrandm)
}else{output=data.frame(RCMNTD=RC,stringsAsFactors = FALSE)}
}else if(sig.index[1] == "all"){
if(output.MNTD)
{
output=list(SES=data.frame(NTI=NTI,stringsAsFactors = FALSE),
Confidence=data.frame(CMNTD=alpha,stringsAsFactors = FALSE),
RC=data.frame(RCMNTD=RC,stringsAsFactors = FALSE),
MNTD.obs=data.frame(MNTD=MNTD.obs),MNTD.rand=MNTDrandm)
}else{
output=list(SES=data.frame(NTI=NTI,stringsAsFactors = FALSE),
Confidence=data.frame(CMNTD=alpha,stringsAsFactors = FALSE),
RC=data.frame(RCMNTD=RC,stringsAsFactors = FALSE))
}
}
output
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.