Nothing
#' Spline basis function of order 1
#'
#' This function is the splines basis function of order 1. This
#' function was coded in accordance to Carl de Boor's set of notes on
#' splines, "B(asic)-Spline Basics".
#' @param x vector, the values at which to evaluate the basis
#' function.
#' @param knots vector, the internal knots.
#' @param i integer, the basis component to be evaluated.
#' @return scalar.
bX <- function(x, knots, i) {
lb <- knots[i]
ub <- knots[i + 1]
## as.numeric(sapply(x, function(y) (y >= lb & y < ub)))
as.numeric(x >= lb & x < ub)
}
#' Generating splines weights
#'
#' This function generates the weights required to construct splines
#' of higher order. This function was coded in accordance to Carl de
#' Boor's set of notes on splines, "B(asic)-Spline Basics".
#' @param x vector, the values at which to evaluate the basis
#' function.
#' @param knots vector, the internal knots.
#' @param i integer, the basis component to be evaluated.
#' @param order integer, the order of the basis. Do not confuse this
#' with the degree of the splines, i.e. order = degree + 1.
#' @return scalar.
weights <- function(x, knots, i, order) {
if (knots[i] != knots[i + order - 1]) {
(x - knots[i]) / (knots[i + order - 1] - knots[i])
} else {
rep(0, length(x))
}
}
#' Constructing higher order splines
#'
#' This function recursively constructs the higher order splines
#' basis. Note that the function does not take into consideration the
#' order of the final basis function. The dimensions of the inputs
#' dicate this, and are updated in each iteration of the
#' recursion. The recursion ends once the row number of argument
#' \code{bmat} reaches 1. This function was coded in accordance to
#' Carl de Boor's set of notes on splines, "B(asic)-Spline Basics".
#' @param x vector, the values at which to evaluate the basis
#' function.
#' @param bmat matrix. Each column of \code{bmat} corresponds to an
#' element of argument \code{x}. Each row corresponds to the
#' evaluation of basis component \code{i}, \code{i + 1}, .... The
#' recursive nature of splines requires that we initially evaluate
#' the basis functions for components \code{i}, ..., \code{i +
#' degree of spline}. Each iteration of the recursion reduces the
#' row of \code{bmat} by 1. The recursion terminates once
#' \code{bmat} has only a single row.
#' @param knots vector, the internal knots.
#' @param i integer, the basis component of interest.
#' @param current.order integer, the current order associated with the
#' argument \code{bmat}.
#' @return vector, the evaluation of the spline at each value in
#' vector \code{x}.
splineUpdate <- function(x, bmat, knots, i, current.order) {
if (is.null(dim(bmat)) & length(x) > 1) {
return(bmat)
}
if (is.null(dim(bmat)) & length(x) == 1) {
if (length(bmat) == 1) {
return(bmat)
} else {
bmat <- as.matrix(bmat)
}
}
if (dim(bmat)[1] == 1) return(bmat)
## Update bmat
wmat <- as.matrix(sapply(x,
function(y) {
sapply(X = seq(i, (i + nrow(bmat) - 1)),
FUN = weights,
x = y,
knots = knots,
order = current.order + 1)}))
bmat1 <- as.matrix(wmat * bmat)
bmat2 <- as.matrix((1 - wmat) * bmat)
bmat <- bmat1[-nrow(bmat), ] + bmat2[-1, ]
## Impose recursion
splineUpdate(x, bmat, knots, i, current.order + 1)
}
#' Evaluating splines basis functions
#'
#' This function evaluates the splines basis functions. Unlike the
#' \code{bSpline} in the \code{splines2} package, this function
#' returns the value of a single spline basis, rather than a vector of
#' values for all the spline basis functions.
#' @param x vector, the values at which to evaluate the basis
#' function.
#' @param knots vector, the internal knots.
#' @param degree integer, the degree of the splines.
#' @param intercept boolean, default set to \code{TRUE}. This includes
#' an additional component to the basis splines so that the
#' splines are a partition of unity (i.e. the sum of all
#' components equal to 1).
#' @param i integer, the basis component to be evaluated.
#' @param boundary.knots vector, default is \code{c(0, 1)}.
#' @return scalar.
splinesBasis <- function(x, knots, degree, intercept = TRUE, i,
boundary.knots = c(0, 1)) {
if (i > degree + length(knots) + intercept) {
return(NA)
}
else {
knots <- sort(c(knots, boundary.knots[2], rep(boundary.knots, degree)))
if(intercept == TRUE) knots <- c(boundary.knots[1], knots)
bmat <- as.matrix(sapply(x,
function(y) {
sapply(X = seq(i, i + degree),
FUN = bX,
x = y,
knots = knots)}))
if (ncol(bmat) != length(x) &
nrow(bmat) == length(x)) bmat <- t(bmat)
bmat <- splineUpdate(x, bmat, knots, i = i, current.order = 1)
return(bmat)
}
}
#' (Alternative) Defining single splines basis functions, with
#' interactions
#'
#' This function returns a numerically integrable function
#' corresponding to a single splines basis function. It was not
#' implemented because it was slower than using the function from the
#' \code{splines2} package.
#' @param splineslist a list of splines commands and names of
#' variables that interact with the splines. This is generated
#' using the command \code{\link{removeSplines}}.
#' @param j the index for the spline for which to generate the basis
#' functions.
#' @param l the index for the basis.
#' @param v a constant that multiplies the spline basis.
#' @return a vectorized function corresponding to a single splines
#' basis function that can be numerically integrated.
altDefSplinesBasis <- function(splineslist, j, l, v = 1) {
cmd <- names(splineslist)[j]
cmd <- gsub("uSplines\\(", "splinesBasis(x = u, i = l, ", cmd)
fun <- function(u) {
v * eval(parse(text = cmd))
}
return(fun)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.