Cat | R Documentation |
The Categorical distribution is a discrete probability distribution that
describes the probability of a single trial resulting in one of k
possible categories. It is a generalization of the Bernoulli distribution
and a special case of the multinomial distribution with n = 1
.
Cat(prob = c(0.5, 0.5))
dcat(x, prob, log = FALSE)
rcat(n, prob)
## S4 method for signature 'Cat,numeric'
d(distr, x, log = FALSE)
## S4 method for signature 'Cat,numeric'
r(distr, n)
## S4 method for signature 'Cat'
mean(x)
## S4 method for signature 'Cat'
mode(x)
## S4 method for signature 'Cat'
var(x)
## S4 method for signature 'Cat'
entro(x)
## S4 method for signature 'Cat'
finf(x)
llcat(x, prob)
## S4 method for signature 'Cat,numeric'
ll(distr, x)
ecat(x, type = "mle", ...)
## S4 method for signature 'Cat,numeric'
mle(distr, x, dim = NULL, na.rm = FALSE)
## S4 method for signature 'Cat,numeric'
me(distr, x, dim = NULL, na.rm = FALSE)
vcat(prob, type = "mle")
## S4 method for signature 'Cat'
avar_mle(distr)
## S4 method for signature 'Cat'
avar_me(distr)
prob |
numeric. Probability vector of success for each category. |
x |
For the density function, |
log |
logical. Should the logarithm of the probability be returned? |
n |
number of observations. If |
distr |
an object of class |
type |
character, case ignored. The estimator type (mle or me). |
... |
extra arguments. |
dim |
numeric. The probability vector dimension. See Details. |
na.rm |
logical. Should the |
The probability mass function (PMF) of the categorical distribution is given by:
f(x; p) = \prod_{i=1}^k p_i^{x_i},
subject to \sum_{i=1}^{k} x_i = n
.
The estimation of prob
from a sample would by default return a vector of
probabilities corresponding to the categories that appeared in the sample and
0 for the rest. However, the parameter dimension cannot be uncovered by the
sample, it has to be provided separately. This can be done with the argument
dim
. If dim
is not supplied, the dimension will be retrieved from the
distr
argument. Categories that did not appear in the sample will have 0
probabilities appended to the end of the prob vector.
Note that the actual dimension of the probability parameter vector is k-1
,
therefore the Fisher information matrix and the asymptotic variance -
covariance matrix of the estimators is of dimension (k-1)x(k-1)
.
Each type of function returns a different type of object:
Distribution Functions: When supplied with one argument (distr
), the
d()
, p()
, q()
, r()
, ll()
functions return the density, cumulative
probability, quantile, random sample generator, and log-likelihood functions,
respectively. When supplied with both arguments (distr
and x
), they
evaluate the aforementioned functions directly.
Moments: Returns a numeric, either vector or matrix depending on the moment
and the distribution. The moments()
function returns a list with all the
available methods.
Estimation: Returns a list, the estimators of the unknown parameters. Note that in distribution families like the binomial, multinomial, and negative binomial, the size is not returned, since it is considered known.
Variance: Returns a named matrix. The asymptotic covariance matrix of the estimator.
dmultinom()
, rmultinom()
# -----------------------------------------------------
# Categorical Distribution Example
# -----------------------------------------------------
# Create the distribution
p <- c(0.1, 0.2, 0.7)
D <- Cat(p)
# ------------------
# dpqr Functions
# ------------------
d(D, 2) # density function
x <- r(D, 100) # random generator function
# alternative way to use the function
df <- d(D) ; df(x) # df is a function itself
# ------------------
# Moments
# ------------------
mean(D) # Expectation
mode(D) # Mode
var(D) # Variance
entro(D) # Entropy
finf(D) # Fisher Information Matrix
# List of all available moments
mom <- moments(D)
mom$mean # expectation
# ------------------
# Point Estimation
# ------------------
ll(D, x)
llcat(x, p)
ecat(x, dim = 3, type = "mle")
ecat(x, dim = 3, type = "me")
mle(D, x)
me(D, x)
e(D, x, type = "mle")
mle("cat", dim = 3, x) # the distr argument can be a character
# ------------------
# Estimator Variance
# ------------------
vcat(p, type = "mle")
vcat(p, type = "me")
avar_mle(D)
avar_me(D)
v(D, type = "mle")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.