Gam | R Documentation |
The Gamma distribution is an absolute continuous probability distribution
with two parameters: shape \alpha > 0
and scale \beta > 0
.
Gam(shape = 1, scale = 1)
## S4 method for signature 'Gam,numeric'
d(distr, x, log = FALSE)
## S4 method for signature 'Gam,numeric'
p(distr, q, lower.tail = TRUE, log.p = FALSE)
## S4 method for signature 'Gam,numeric'
qn(distr, p, lower.tail = TRUE, log.p = FALSE)
## S4 method for signature 'Gam,numeric'
r(distr, n)
## S4 method for signature 'Gam'
mean(x)
## S4 method for signature 'Gam'
median(x)
## S4 method for signature 'Gam'
mode(x)
## S4 method for signature 'Gam'
var(x)
## S4 method for signature 'Gam'
sd(x)
## S4 method for signature 'Gam'
skew(x)
## S4 method for signature 'Gam'
kurt(x)
## S4 method for signature 'Gam'
entro(x)
## S4 method for signature 'Gam'
finf(x)
llgamma(x, shape, scale)
## S4 method for signature 'Gam,numeric'
ll(distr, x)
egamma(x, type = "mle", ...)
## S4 method for signature 'Gam,numeric'
mle(
distr,
x,
par0 = "same",
method = "L-BFGS-B",
lower = 1e-05,
upper = Inf,
na.rm = FALSE
)
## S4 method for signature 'Gam,numeric'
me(distr, x, na.rm = FALSE)
## S4 method for signature 'Gam,numeric'
same(distr, x, na.rm = FALSE)
vgamma(shape, scale, type = "mle")
## S4 method for signature 'Gam'
avar_mle(distr)
## S4 method for signature 'Gam'
avar_me(distr)
## S4 method for signature 'Gam'
avar_same(distr)
shape , scale |
numeric. The non-negative distribution parameters. |
distr |
an object of class |
x |
For the density function, |
log , log.p |
logical. Should the logarithm of the probability be returned? |
q |
numeric. Vector of quantiles. |
lower.tail |
logical. If TRUE (default), probabilities are
|
p |
numeric. Vector of probabilities. |
n |
number of observations. If |
type |
character, case ignored. The estimator type (mle, me, or same). |
... |
extra arguments. |
par0 , method , lower , upper |
arguments passed to optim for the mle optimization. See Details. |
na.rm |
logical. Should the |
The probability density function (PDF) of the Gamma distribution is given by:
f(x; \alpha, \beta) = \frac{\beta^{-\alpha} x^{\alpha-1}
e^{-x/\beta}}{\Gamma(\alpha)}, \quad x > 0.
The MLE of the gamma distribution parameters is not available in closed form
and has to be approximated numerically. This is done with optim()
. The
optimization can be performed on the shape parameter
\alpha\in(0,+\infty)
. The default method used is the L-BFGS-B method
with lower bound 1e-5
and upper bound Inf
. The par0
argument can either
be a numeric (satisfying lower <= par0 <= upper
) or a character specifying
the closed-form estimator to be used as initialization for the algorithm
("me"
or "same"
- the default value).
Each type of function returns a different type of object:
Distribution Functions: When supplied with one argument (distr
), the
d()
, p()
, q()
, r()
, ll()
functions return the density, cumulative
probability, quantile, random sample generator, and log-likelihood functions,
respectively. When supplied with both arguments (distr
and x
), they
evaluate the aforementioned functions directly.
Moments: Returns a numeric, either vector or matrix depending on the moment
and the distribution. The moments()
function returns a list with all the
available methods.
Estimation: Returns a list, the estimators of the unknown parameters. Note that in distribution families like the binomial, multinomial, and negative binomial, the size is not returned, since it is considered known.
Variance: Returns a named matrix. The asymptotic covariance matrix of the estimator.
Wiens, D. P., Cheng, J., & Beaulieu, N. C. (2003). A class of method of moments estimators for the two-parameter gamma family. Pakistan Journal of Statistics, 19(1), 129-141.
Ye, Z. S., & Chen, N. (2017). Closed-form estimators for the gamma distribution derived from likelihood equations. The American Statistician, 71(2), 177-181.
Tamae, H., Irie, K. & Kubokawa, T. (2020), A score-adjusted approach to closed-form estimators for the gamma and beta distributions, Japanese Journal of Statistics and Data Science 3, 543–561.
Papadatos, N. (2022), On point estimators for gamma and beta distributions, arXiv preprint arXiv:2205.10799.
Functions from the stats
package: dgamma()
, pgamma()
, qgamma()
,
rgamma()
# -----------------------------------------------------
# Gamma Distribution Example
# -----------------------------------------------------
# Create the distribution
a <- 3 ; b <- 5
D <- Gam(a, b)
# ------------------
# dpqr Functions
# ------------------
d(D, c(0.3, 2, 10)) # density function
p(D, c(0.3, 2, 10)) # distribution function
qn(D, c(0.4, 0.8)) # inverse distribution function
x <- r(D, 100) # random generator function
# alternative way to use the function
df <- d(D) ; df(x) # df is a function itself
# ------------------
# Moments
# ------------------
mean(D) # Expectation
median(D) # Median
mode(D) # Mode
var(D) # Variance
sd(D) # Standard Deviation
skew(D) # Skewness
kurt(D) # Excess Kurtosis
entro(D) # Entropy
finf(D) # Fisher Information Matrix
# List of all available moments
mom <- moments(D)
mom$mean # expectation
# ------------------
# Point Estimation
# ------------------
ll(D, x)
llgamma(x, a, b)
egamma(x, type = "mle")
egamma(x, type = "me")
egamma(x, type = "same")
mle(D, x)
me(D, x)
same(D, x)
e(D, x, type = "mle")
mle("gam", x) # the distr argument can be a character
# ------------------
# Estimator Variance
# ------------------
vgamma(a, b, type = "mle")
vgamma(a, b, type = "me")
vgamma(a, b, type = "same")
avar_mle(D)
avar_me(D)
avar_same(D)
v(D, type = "mle")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.