Unif | R Documentation |
The Uniform distribution is an absolute continuous probability distribution
where all intervals of the same length within the distribution's support are
equally probable. It is defined by two parameters: the lower bound a
and the upper bound b
, with a < b
.
Unif(min = 0, max = 1)
## S4 method for signature 'Unif,numeric'
d(distr, x, log = FALSE)
## S4 method for signature 'Unif,numeric'
p(distr, q, lower.tail = TRUE, log.p = FALSE)
## S4 method for signature 'Unif,numeric'
qn(distr, p, lower.tail = TRUE, log.p = FALSE)
## S4 method for signature 'Unif,numeric'
r(distr, n)
## S4 method for signature 'Unif'
mean(x)
## S4 method for signature 'Unif'
median(x)
## S4 method for signature 'Unif'
mode(x)
## S4 method for signature 'Unif'
var(x)
## S4 method for signature 'Unif'
sd(x)
## S4 method for signature 'Unif'
skew(x)
## S4 method for signature 'Unif'
kurt(x)
## S4 method for signature 'Unif'
entro(x)
llunif(x, min, max)
## S4 method for signature 'Unif,numeric'
ll(distr, x)
eunif(x, type = "mle", ...)
## S4 method for signature 'Unif,numeric'
mle(distr, x, na.rm = FALSE)
## S4 method for signature 'Unif,numeric'
me(distr, x, na.rm = FALSE)
min , max |
numeric. The distribution parameters. |
distr |
an object of class |
x |
For the density function, |
log , log.p |
logical. Should the logarithm of the probability be returned? |
q |
numeric. Vector of quantiles. |
lower.tail |
logical. If TRUE (default), probabilities are
|
p |
numeric. Vector of probabilities. |
n |
number of observations. If |
type |
character, case ignored. The estimator type (mle or me). |
... |
extra arguments. |
na.rm |
logical. Should the |
The probability density function (PDF) of the Uniform distribution is:
f(x; a, b) = \frac{1}{b - a}, \quad a \le x \le b .
Each type of function returns a different type of object:
Distribution Functions: When supplied with one argument (distr
), the
d()
, p()
, q()
, r()
, ll()
functions return the density, cumulative
probability, quantile, random sample generator, and log-likelihood functions,
respectively. When supplied with both arguments (distr
and x
), they
evaluate the aforementioned functions directly.
Moments: Returns a numeric, either vector or matrix depending on the moment
and the distribution. The moments()
function returns a list with all the
available methods.
Estimation: Returns a list, the estimators of the unknown parameters. Note that in distribution families like the binomial, multinomial, and negative binomial, the size is not returned, since it is considered known.
Variance: Returns a named matrix. The asymptotic covariance matrix of the estimator.
Functions from the stats
package: dunif()
, punif()
, qunif()
,
runif()
# -----------------------------------------------------
# Uniform Distribution Example
# -----------------------------------------------------
# Create the distribution
a <- 3 ; b <- 5
D <- Unif(a, b)
# ------------------
# dpqr Functions
# ------------------
d(D, c(0.3, 0.8, 0.5)) # density function
p(D, c(0.3, 0.8, 0.5)) # distribution function
qn(D, c(0.4, 0.8)) # inverse distribution function
x <- r(D, 100) # random generator function
# alternative way to use the function
df <- d(D) ; df(x) # df is a function itself
# ------------------
# Moments
# ------------------
mean(D) # Expectation
var(D) # Variance
sd(D) # Standard Deviation
skew(D) # Skewness
kurt(D) # Excess Kurtosis
entro(D) # Entropy
# List of all available moments
mom <- moments(D)
mom$mean # expectation
# ------------------
# Point Estimation
# ------------------
ll(D, x)
llunif(x, a, b)
eunif(x, type = "mle")
eunif(x, type = "me")
mle(D, x)
me(D, x)
e(D, x, type = "mle")
mle("unif", x) # the distr argument can be a character
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.