variance | R Documentation |
These functions calculate the variance (or variance - covariance matrix in the multidimensional case) of an estimator, given a specified family of distributions and the true parameter values.
v(distr, type, ...)
avar_mle(distr, ...)
avar_me(distr, ...)
avar_same(distr, ...)
distr |
A |
type |
character, case ignored. The estimator type. |
... |
extra arguments. |
numeric, or matrix for multidimensional cases.
avar_mle()
: Asymptotic Variance of the Maximum Likelihood Estimator
avar_me()
: Asymptotic Variance of the Moment Estimator
avar_same()
: Asymptotic Variance of the Score-Adjusted Moment
Estimator
General Textbooks
Van der Vaart, A. W. (2000), Asymptotic statistics, Vol. 3, Cambridge university press.
Beta and gamma distribution families
Ye, Z.-S. & Chen, N. (2017), Closed-form estimators for the gamma distribution derived from likelihood equations, The American Statistician 71(2), 177–181.
Tamae, H., Irie, K. & Kubokawa, T. (2020), A score-adjusted approach to closed-form estimators for the gamma and beta distributions, Japanese Journal of Statistics and Data Science 3, 543–561.
Mathal, A. & Moschopoulos, P. (1992), A form of multivariate gamma distribution, Annals of the Institute of Statistical Mathematics 44, 97–106.
Oikonomidis, I. & Trevezas, S. (2023), Moment-Type Estimators for the Dirichlet and the Multivariate Gamma Distributions, arXiv, https://arxiv.org/abs/2311.15025
avar_mle, avar_me, avar_same
# -----------------------------------------------------
# Beta Distribution Example
# -----------------------------------------------------
# Create the distribution
a <- 3
b <- 5
D <- Beta(a, b)
# ------------------
# dpqr Functions
# ------------------
d(D, c(0.3, 0.8, 0.5)) # density function
p(D, c(0.3, 0.8, 0.5)) # distribution function
qn(D, c(0.4, 0.8)) # inverse distribution function
x <- r(D, 100) # random generator function
# alternative way to use the function
df <- d(D) ; df(x) # df is a function itself
# ------------------
# Moments
# ------------------
mean(D) # Expectation
var(D) # Variance
sd(D) # Standard Deviation
skew(D) # Skewness
kurt(D) # Excess Kurtosis
entro(D) # Entropy
finf(D) # Fisher Information Matrix
# List of all available moments
mom <- moments(D)
mom$mean # expectation
# ------------------
# Point Estimation
# ------------------
ll(D, x)
llbeta(x, a, b)
ebeta(x, type = "mle")
ebeta(x, type = "me")
ebeta(x, type = "same")
mle(D, x)
me(D, x)
same(D, x)
e(D, x, type = "mle")
mle("beta", x) # the distr argument can be a character
# ------------------
# Estimator Variance
# ------------------
vbeta(a, b, type = "mle")
vbeta(a, b, type = "me")
vbeta(a, b, type = "same")
avar_mle(D)
avar_me(D)
avar_same(D)
v(D, type = "mle")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.