moments | R Documentation |
A set of functions that calculate the theoretical moments (expectation, variance, skewness, excess kurtosis) and other important parametric functions (median, mode, entropy, Fisher information) of a distribution.
moments(x)
mean(x, ...)
median(x, na.rm = FALSE, ...)
mode(x)
var(x, y = NULL, na.rm = FALSE, use)
sd(x, na.rm = FALSE)
skew(x, ...)
kurt(x, ...)
entro(x, ...)
finf(x, ...)
x |
a |
... |
extra arguments. |
y , use , na.rm |
arguments in |
Given a distribution, these functions calculate the theoretical moments and
other parametric quantities of interest. Some distribution-function
combinations are not available; for example, the sd()
function is
available only for univariate distributions.
The moments()
function automatically finds the available methods for a
given distribution and results all of the results in a list.
Technical Note:
The argument of the moment functions does not follow the naming convention of
the package, i.e. the Distribution
object is names x
rather than distr
.
This is due to the fact that most of the generics are already defined in the
stats
package (mean
, median
, mode
, var
, sd
), therefore the first
argument was already named x
and could not change.
Numeric, either vector or matrix depending on the moment and the
distribution. The moments()
function returns a list with all the available
methods.
median()
: Median
mode()
: Mode
var()
: Variance
sd()
: Standard Deviation
skew()
: Skewness
kurt()
: Kurtosis
entro()
: Entropy
finf()
: Fisher Information (numeric or matrix)
distributions, loglikelihood, estimation
# -----------------------------------------------------
# Beta Distribution Example
# -----------------------------------------------------
# Create the distribution
a <- 3
b <- 5
D <- Beta(a, b)
# ------------------
# dpqr Functions
# ------------------
d(D, c(0.3, 0.8, 0.5)) # density function
p(D, c(0.3, 0.8, 0.5)) # distribution function
qn(D, c(0.4, 0.8)) # inverse distribution function
x <- r(D, 100) # random generator function
# alternative way to use the function
df <- d(D) ; df(x) # df is a function itself
# ------------------
# Moments
# ------------------
mean(D) # Expectation
var(D) # Variance
sd(D) # Standard Deviation
skew(D) # Skewness
kurt(D) # Excess Kurtosis
entro(D) # Entropy
finf(D) # Fisher Information Matrix
# List of all available moments
mom <- moments(D)
mom$mean # expectation
# ------------------
# Point Estimation
# ------------------
ll(D, x)
llbeta(x, a, b)
ebeta(x, type = "mle")
ebeta(x, type = "me")
ebeta(x, type = "same")
mle(D, x)
me(D, x)
same(D, x)
e(D, x, type = "mle")
mle("beta", x) # the distr argument can be a character
# ------------------
# Estimator Variance
# ------------------
vbeta(a, b, type = "mle")
vbeta(a, b, type = "me")
vbeta(a, b, type = "same")
avar_mle(D)
avar_me(D)
avar_same(D)
v(D, type = "mle")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.