Stud | R Documentation |
The Student's t-distribution is a continuous probability distribution used
primarily in hypothesis testing and in constructing confidence intervals for
small sample sizes. It is defined by one parameter: the degrees of freedom
\nu > 0
.
Stud(df = 1)
## S4 method for signature 'Stud,numeric'
d(distr, x, log = FALSE)
## S4 method for signature 'Stud,numeric'
p(distr, q, lower.tail = TRUE, log.p = FALSE)
## S4 method for signature 'Stud,numeric'
qn(distr, p, lower.tail = TRUE, log.p = FALSE)
## S4 method for signature 'Stud,numeric'
r(distr, n)
## S4 method for signature 'Stud'
mean(x)
## S4 method for signature 'Stud'
median(x)
## S4 method for signature 'Stud'
mode(x)
## S4 method for signature 'Stud'
var(x)
## S4 method for signature 'Stud'
sd(x)
## S4 method for signature 'Stud'
skew(x)
## S4 method for signature 'Stud'
kurt(x)
## S4 method for signature 'Stud'
entro(x)
llt(x, df)
## S4 method for signature 'Stud,numeric'
ll(distr, x)
df |
numeric. The distribution degrees of freedom parameter. |
distr |
an object of class |
x |
For the density function, |
log , log.p |
logical. Should the logarithm of the probability be returned? |
q |
numeric. Vector of quantiles. |
lower.tail |
logical. If TRUE (default), probabilities are
|
p |
numeric. Vector of probabilities. |
n |
number of observations. If |
The probability density function (PDF) of the Student's t-distribution is:
f(x; \nu) = \frac{\Gamma\left(\frac{\nu + 1}{2}\right)}{\sqrt{\nu\pi}\
\Gamma\left(\frac{\nu}{2}\right)}\left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu
+ 1}{2}} .
Each type of function returns a different type of object:
Distribution Functions: When supplied with one argument (distr
), the
d()
, p()
, q()
, r()
, ll()
functions return the density, cumulative
probability, quantile, random sample generator, and log-likelihood functions,
respectively. When supplied with both arguments (distr
and x
), they
evaluate the aforementioned functions directly.
Moments: Returns a numeric, either vector or matrix depending on the moment
and the distribution. The moments()
function returns a list with all the
available methods.
Estimation: Returns a list, the estimators of the unknown parameters. Note that in distribution families like the binomial, multinomial, and negative binomial, the size is not returned, since it is considered known.
Variance: Returns a named matrix. The asymptotic covariance matrix of the estimator.
Functions from the stats
package: dt()
, pt()
, qt()
, rt()
# -----------------------------------------------------
# Student Distribution Example
# -----------------------------------------------------
# Create the distribution
df <- 12
D <- Stud(df)
# ------------------
# dpqr Functions
# ------------------
d(D, c(-3, 0, 3)) # density function
p(D, c(-3, 0, 3)) # distribution function
qn(D, c(0.4, 0.8)) # inverse distribution function
x <- r(D, 100) # random generator function
# alternative way to use the function
d1 <- d(D) ; d1(x) # d1 is a function itself
# ------------------
# Moments
# ------------------
mean(D) # Expectation
median(D) # Median
mode(D) # Mode
var(D) # Variance
sd(D) # Standard Deviation
skew(D) # Skewness
kurt(D) # Excess Kurtosis
entro(D) # Entropy
# List of all available moments
mom <- moments(D)
mom$mean # expectation
# ------------------
# Point Estimation
# ------------------
ll(D, x)
llt(x, df)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.