functionals | R Documentation |
A collection of S4 classes that provide a flexible and structured way to work with probability distributions.
## S4 method for signature 'Distribution,missing'
d(distr, x, ...)
## S4 method for signature 'Distribution,missing'
p(distr, q, ...)
## S4 method for signature 'Distribution,missing'
qn(distr, p, ...)
## S4 method for signature 'Distribution,missing'
r(distr, n, ...)
## S4 method for signature 'Distribution,missing'
ll(distr, x, ...)
## S4 method for signature 'Distribution,missing'
mle(distr, x, ...)
## S4 method for signature 'Distribution,missing'
me(distr, x, ...)
## S4 method for signature 'Distribution,missing'
same(distr, x, ...)
distr |
a |
x , q , p , n |
missing. Arguments not supplied. |
... |
extra arguments. |
When x
, q
, p
, or n
are missing, the methods return a function that
takes as input the missing argument, allowing the user to work with the
function object itself. See examples.
When supplied with one argument, the d()
, p()
, q()
, r()
ll()
functions return the density, cumulative probability, quantile, random sample
generator, and log-likelihood functions, respectively.
moments, loglikelihood, estimation, Bern, Beta, Binom, Cat, Cauchy, Chisq, Dir, Exp, Fisher, Gam, Geom, Laplace, Lnorm, Multigam, Multinom, Nbinom, Norm, Pois, Stud, Unif, Weib
# -----------------------------------------------------
# Beta Distribution Example
# -----------------------------------------------------
# Create the distribution
a <- 3
b <- 5
D <- Beta(a, b)
# ------------------
# dpqr Functions
# ------------------
d(D, c(0.3, 0.8, 0.5)) # density function
p(D, c(0.3, 0.8, 0.5)) # distribution function
qn(D, c(0.4, 0.8)) # inverse distribution function
x <- r(D, 100) # random generator function
# alternative way to use the function
df <- d(D) ; df(x) # df is a function itself
# ------------------
# Moments
# ------------------
mean(D) # Expectation
var(D) # Variance
sd(D) # Standard Deviation
skew(D) # Skewness
kurt(D) # Excess Kurtosis
entro(D) # Entropy
finf(D) # Fisher Information Matrix
# List of all available moments
mom <- moments(D)
mom$mean # expectation
# ------------------
# Point Estimation
# ------------------
ll(D, x)
llbeta(x, a, b)
ebeta(x, type = "mle")
ebeta(x, type = "me")
ebeta(x, type = "same")
mle(D, x)
me(D, x)
same(D, x)
e(D, x, type = "mle")
mle("beta", x) # the distr argument can be a character
# ------------------
# Estimator Variance
# ------------------
vbeta(a, b, type = "mle")
vbeta(a, b, type = "me")
vbeta(a, b, type = "same")
avar_mle(D)
avar_me(D)
avar_same(D)
v(D, type = "mle")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.