| functionals | R Documentation |
A collection of S4 classes that provide a flexible and structured way to work with probability distributions.
## S4 method for signature 'Distribution,missing'
d(distr, x, ...)
## S4 method for signature 'Distribution,missing'
p(distr, q, ...)
## S4 method for signature 'Distribution,missing'
qn(distr, p, ...)
## S4 method for signature 'Distribution,missing'
r(distr, n, ...)
## S4 method for signature 'Distribution,missing'
ll(distr, x, ...)
## S4 method for signature 'Distribution,missing'
mle(distr, x, ...)
## S4 method for signature 'Distribution,missing'
me(distr, x, ...)
## S4 method for signature 'Distribution,missing'
same(distr, x, ...)
distr |
a |
x, q, p, n |
missing. Arguments not supplied. |
... |
extra arguments. |
When x, q, p, or n are missing, the methods return a function that
takes as input the missing argument, allowing the user to work with the
function object itself. See examples.
When supplied with one argument, the d(), p(), q(), r() ll()
functions return the density, cumulative probability, quantile, random sample
generator, and log-likelihood functions, respectively.
moments, loglikelihood, estimation, Bern, Beta, Binom, Cat, Cauchy, Chisq, Dir, Exp, Fisher, Gam, Geom, Laplace, Lnorm, Multigam, Multinom, Nbinom, Norm, Pois, Stud, Unif, Weib
# -----------------------------------------------------
# Beta Distribution Example
# -----------------------------------------------------
# Create the distribution
a <- 3
b <- 5
D <- Beta(a, b)
# ------------------
# dpqr Functions
# ------------------
d(D, c(0.3, 0.8, 0.5)) # density function
p(D, c(0.3, 0.8, 0.5)) # distribution function
qn(D, c(0.4, 0.8)) # inverse distribution function
x <- r(D, 100) # random generator function
# alternative way to use the function
df <- d(D) ; df(x) # df is a function itself
# ------------------
# Moments
# ------------------
mean(D) # Expectation
var(D) # Variance
sd(D) # Standard Deviation
skew(D) # Skewness
kurt(D) # Excess Kurtosis
entro(D) # Entropy
finf(D) # Fisher Information Matrix
# List of all available moments
mom <- moments(D)
mom$mean # expectation
# ------------------
# Point Estimation
# ------------------
ll(D, x)
llbeta(x, a, b)
ebeta(x, type = "mle")
ebeta(x, type = "me")
ebeta(x, type = "same")
mle(D, x)
me(D, x)
same(D, x)
e(D, x, type = "mle")
mle("beta", x) # the distr argument can be a character
# ------------------
# Estimator Variance
# ------------------
vbeta(a, b, type = "mle")
vbeta(a, b, type = "me")
vbeta(a, b, type = "same")
avar_mle(D)
avar_me(D)
avar_same(D)
v(D, type = "mle")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.