Nothing
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Gam Distribution ----
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Distribution ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
setClass("Gam",
contains = "Distribution",
slots = c(shape = "numeric", scale = "numeric"),
prototype = list(shape = 1, scale = 1))
#' @title Gamma Distribution
#' @name Gam
#'
#' @description
#' The Gamma distribution is an absolute continuous probability distribution
#' with two parameters: shape \eqn{\alpha > 0} and scale \eqn{\beta > 0}.
#'
#' @srrstats {G1.0} A list of publications is provided in references.
#'
#' @param n number of observations. If `length(n) > 1`, the length is taken to
#' be the number required.
#' @param distr an object of class `Gam`.
#' @param x For the density function, `x` is a numeric vector of quantiles. For
#' the moments functions, `x` is an object of class `Gam`. For the
#' log-likelihood and the estimation functions, `x` is the sample of
#' observations.
#' @param p numeric. Vector of probabilities.
#' @param q numeric. Vector of quantiles.
#' @param shape,scale numeric. The non-negative distribution parameters.
#' @param type character, case ignored. The estimator type (mle, me, or same).
#' @param log,log.p logical. Should the logarithm of the probability be
#' returned?
#' @param lower.tail logical. If TRUE (default), probabilities are
#' \eqn{P(X \leq x)}, otherwise \eqn{P(X > x)}.
#' @param na.rm logical. Should the `NA` values be removed?
#' @param ... extra arguments.
#' @param par0,method,lower,upper arguments passed to optim for the mle
#' optimization. See Details.
#'
#' @details
#' The probability density function (PDF) of the Gamma distribution is given by:
#' \deqn{ f(x; \alpha, \beta) = \frac{\beta^{-\alpha} x^{\alpha-1}
#' e^{-x/\beta}}{\Gamma(\alpha)}, \quad x > 0. }
#'
#' The MLE of the gamma distribution parameters is not available in closed form
#' and has to be approximated numerically. This is done with `optim()`. The
#' optimization can be performed on the shape parameter
#' \eqn{\alpha\in(0,+\infty)}. The default method used is the L-BFGS-B method
#' with lower bound `1e-5` and upper bound `Inf`. The `par0` argument can either
#' be a numeric (satisfying `lower <= par0 <= upper`) or a character specifying
#' the closed-form estimator to be used as initialization for the algorithm
#' (`"me"` or `"same"` - the default value).
#'
#' @inherit distributions return
#'
#' @references
#'
#' - Wiens, D. P., Cheng, J., & Beaulieu, N. C. (2003). A class of method of
#' moments estimators for the two-parameter gamma family. Pakistan Journal of
#' Statistics, 19(1), 129-141.
#'
#' - Ye, Z. S., & Chen, N. (2017). Closed-form estimators for the gamma
#' distribution derived from likelihood equations. The American Statistician,
#' 71(2), 177-181.
#'
#' - Tamae, H., Irie, K. & Kubokawa, T. (2020), A score-adjusted approach to
#' closed-form estimators for the gamma and beta distributions, Japanese Journal
#' of Statistics and Data Science 3, 543–561.
#'
#' - Papadatos, N. (2022), On point estimators for gamma and beta distributions,
#' arXiv preprint arXiv:2205.10799.
#'
#' @seealso
#' Functions from the `stats` package: [dgamma()], [pgamma()], [qgamma()],
#' [rgamma()]
#'
#' @export
#'
#' @examples
#' # -----------------------------------------------------
#' # Gamma Distribution Example
#' # -----------------------------------------------------
#'
#' # Create the distribution
#' a <- 3 ; b <- 5
#' D <- Gam(a, b)
#'
#' # ------------------
#' # dpqr Functions
#' # ------------------
#'
#' d(D, c(0.3, 2, 10)) # density function
#' p(D, c(0.3, 2, 10)) # distribution function
#' qn(D, c(0.4, 0.8)) # inverse distribution function
#' x <- r(D, 100) # random generator function
#'
#' # alternative way to use the function
#' df <- d(D) ; df(x) # df is a function itself
#'
#' # ------------------
#' # Moments
#' # ------------------
#'
#' mean(D) # Expectation
#' median(D) # Median
#' mode(D) # Mode
#' var(D) # Variance
#' sd(D) # Standard Deviation
#' skew(D) # Skewness
#' kurt(D) # Excess Kurtosis
#' entro(D) # Entropy
#' finf(D) # Fisher Information Matrix
#'
#' # List of all available moments
#' mom <- moments(D)
#' mom$mean # expectation
#'
#' # ------------------
#' # Point Estimation
#' # ------------------
#'
#' ll(D, x)
#' llgamma(x, a, b)
#'
#' egamma(x, type = "mle")
#' egamma(x, type = "me")
#' egamma(x, type = "same")
#'
#' mle(D, x)
#' me(D, x)
#' same(D, x)
#' e(D, x, type = "mle")
#'
#' mle("gam", x) # the distr argument can be a character
#'
#' # ------------------
#' # Estimator Variance
#' # ------------------
#'
#' vgamma(a, b, type = "mle")
#' vgamma(a, b, type = "me")
#' vgamma(a, b, type = "same")
#'
#' avar_mle(D)
#' avar_me(D)
#' avar_same(D)
#'
#' v(D, type = "mle")
Gam <- function(shape = 1, scale = 1) {
new("Gam", shape = shape, scale = scale)
}
setValidity("Gam", function(object) {
if(length(object@shape) != 1) {
stop("shape has to be a numeric of length 1")
}
if(object@shape <= 0) {
stop("shape has to be positive")
}
if(length(object@scale) != 1) {
stop("scale has to be a numeric of length 1")
}
if(object@scale <= 0) {
stop("scale has to be positive")
}
TRUE
})
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## d, p, q, r ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @rdname Gam
setMethod("d", signature = c(distr = "Gam", x = "numeric"),
function(distr, x, log = FALSE) {
dgamma(x, shape = distr@shape, scale = distr@scale, log = log)
})
#' @rdname Gam
setMethod("p", signature = c(distr = "Gam", q = "numeric"),
function(distr, q, lower.tail = TRUE, log.p = FALSE) {
pgamma(q, shape = distr@shape, scale = distr@scale,
lower.tail = lower.tail, log.p = log.p)
})
#' @rdname Gam
setMethod("qn", signature = c(distr = "Gam", p = "numeric"),
function(distr, p, lower.tail = TRUE, log.p = FALSE) {
qgamma(p, shape = distr@shape, scale = distr@scale,
lower.tail = lower.tail, log.p = log.p)
})
#' @rdname Gam
setMethod("r", signature = c(distr = "Gam", n = "numeric"),
function(distr, n) {
rgamma(n, shape = distr@shape, scale = distr@scale)
})
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Moments ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @rdname Gam
setMethod("mean",
signature = c(x = "Gam"),
definition = function(x) {
x@shape * x@scale
})
#' @rdname Gam
#' @export
setMethod("median",
signature = c(x = "Gam"),
definition = function(x) {
qgamma(0.5, shape = x@shape, scale = x@scale)
})
#' @rdname Gam
setMethod("mode",
signature = c(x = "Gam"),
definition = function(x) {
a <- x@shape
b <- x@scale
if(a >= 1) {
return((a - 1) / b)
} else {
return(0)
}
})
#' @rdname Gam
setMethod("var",
signature = c(x = "Gam"),
definition = function(x) {
x@shape * x@scale ^ 2
})
#' @rdname Gam
setMethod("sd",
signature = c(x = "Gam"),
definition = function(x) {
sqrt(var(x))
})
#' @rdname Gam
setMethod("skew",
signature = c(x = "Gam"),
definition = function(x) {
2 / sqrt(x@shape)
})
#' @rdname Gam
setMethod("kurt",
signature = c(x = "Gam"),
definition = function(x) {
6 / x@shape
})
#' @rdname Gam
setMethod("entro",
signature = c(x = "Gam"),
definition = function(x) {
a <- x@shape
a + log(x@scale) + lgamma(a) + (1 - a) * digamma(a)
})
#' @rdname Gam
setMethod("finf",
signature = c(x = "Gam"),
definition = function(x) {
a <- x@shape
b <- x@scale
D <- matrix(c(trigamma(a), 1 / b, 1 / b, a / b ^ 2),
nrow = 2, ncol = 2)
rownames(D) <- c("shape", "scale")
colnames(D) <- c("shape", "scale")
D
})
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Likelihood ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @rdname Gam
#' @export
llgamma <- function(x, shape, scale) {
ll(Gam(shape, scale), x)
}
#' @rdname Gam
setMethod("ll",
signature = c(distr = "Gam", x = "numeric"),
definition = function(distr, x) {
a <- distr@shape
b <- distr@scale
- length(x) * (lgamma(a) + a * log(b)) + (a - 1) * sum(log(x)) - sum(x) / b
})
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Score ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
setMethod("lloptim",
signature = c(par = "numeric", tx = "numeric", distr = "Gam"),
definition = function(par, tx, distr) {
par * log(par) - lgamma(par) - (tx[1] + 1) * par + (par - 1) * tx[2]
})
setMethod("dlloptim",
signature = c(par = "numeric", tx = "numeric", distr = "Gam"),
definition = function(par, tx, distr) {
log(par) - digamma(par) - tx[1] + tx[2]
})
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Estimation ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @rdname Gam
#' @export
egamma <- function(x, type = "mle", ...) {
type <- match.arg(tolower(type), choices = c("mle", "me", "same"))
distr <- Gam()
do.call(type, list(distr = distr, x = x, ...))
}
#' @rdname Gam
setMethod("mle",
signature = c(distr = "Gam", x = "numeric"),
definition = function(distr, x,
par0 = "same",
method = "L-BFGS-B",
lower = 1e-5,
upper = Inf, na.rm = FALSE) {
x <- check_data(x, na.rm = na.rm)
par0 <- check_optim(par0, method, lower, upper,
choices = c("me", "same"), len = 1)
if (is.character(par0)) {
par0 <- egamma(x, type = par0)$shape
}
tx <- c(log(mean(x)), mean(log(x)))
par <- optim(par = par0,
fn = lloptim,
gr = dlloptim,
tx = tx,
distr = distr,
method = method,
lower = lower,
upper = upper,
control = list(fnscale = -1))$par
list(shape = par, scale = mean(x) / par)
})
#' @rdname Gam
setMethod("me",
signature = c(distr = "Gam", x = "numeric"),
definition = function(distr, x, na.rm = FALSE) {
x <- check_data(x, na.rm = na.rm)
m <- mean(x)
m2 <- mean(x ^ 2)
s2 <- m2 - m ^ 2
list(shape = m ^ 2 / s2, scale = s2 / m)
})
#' @rdname Gam
setMethod("same",
signature = c(distr = "Gam", x = "numeric"),
definition = function(distr, x, na.rm = FALSE) {
x <- check_data(x, na.rm = na.rm)
mx <- mean(x)
mlx <- mean(log(x))
mxlx <- mean(x * log(x))
cxlx <- mxlx - mx * mlx
list(shape = mx / cxlx, scale = cxlx)
})
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Variance ----
## ~~~~~~~~~~~~~~~~~~~~~~~~~~~
#' @rdname Gam
#' @export
vgamma <- function(shape, scale, type = "mle") {
type <- match.arg(tolower(type), choices = c("mle", "me", "same"))
distr <- Gam(shape, scale)
do.call(paste0("avar_", type), list(distr = distr))
}
#' @rdname Gam
setMethod("avar_mle",
signature = c(distr = "Gam"),
definition = function(distr) {
inv2x2(finf(distr))
})
#' @rdname Gam
setMethod("avar_me",
signature = c(distr = "Gam"),
definition = function(distr) {
a <- distr@shape
b <- distr@scale
s11 <- 2 * a * (a + 1)
s22 <- b ^ 2 * (2 * a + 3) / a
s12 <- - 2 * b * (a + 1)
D <- matrix(c(s11, s12, s12, s22), nrow = 2, ncol = 2)
rownames(D) <- c("shape", "scale")
colnames(D) <- c("shape", "scale")
D
})
#' @rdname Gam
setMethod("avar_same",
signature = c(distr = "Gam"),
definition = function(distr) {
a <- distr@shape
b <- distr@scale
c1 <- 1 + a * trigamma(a + 1)
c2 <- 1 + a * trigamma(a)
v11 <- a ^ 2 * c1
v21 <- - a * b * c1
v22 <- b ^ 2 * c2
D <- matrix(c(v11, v21, v21, v22), 2, 2)
rownames(D) <- c("shape", "scale")
colnames(D) <- c("shape", "scale")
D
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.