Nothing
#' Parametric starts
#'
#' A parametric start is a density function with an associated estimator which
#' is used as a starting point in `kdensity`. Several parametric starts
#' are implemented, all with maximum likelihood estimation. Custom-made
#' parametric starts are possible, see the Structure section.
#'
#' @usage NULL
#' @format NULL
#' @section Structure:
#' The parametric start contains three elements: The density function, an
#' estimation function, and the support of the density. The parameters of
#' the density function must partially match the parameters of the estimator
#' function. The estimator function takes one argument, a numeric vector,
#' which is passed from `kdensity`.
#'
#' @section Supported parametric starts: `kdensity` supports more than
#' 20 built-in starts from the [univariateML] package, see
#' `univariateML::univariateML_models` for a list. Densities with variable
#' support, `power`, are not supported. The `pareto` density has its
#' support fixed to `(1,Inf)`. The
#' options `uniform, constant` makes `kdensity` estimate a kernel
#' density without parametric starts.
#' @examples start_exponential = list(
#' density = stats::dexp,
#' estimator = function(data) {
#' c(rate = 1/mean(data))
#' },
#' support = c(0, Inf)
#' )
#'
#' start_inverse_gaussian = list(
#' density = extraDistr::dwald,
#' estimator = function(data) {
#' c(mu = mean(data),
#' lambda = mean(1/data - 1/mean(data)))
#' },
#' support = c(0, Inf)
#' )
#'
#' @seealso [kdensity()]; [kernels()]; [bandwidths()]
#' @name parametric_starts
NULL
parser = function(str) parse(text = str)[[1]]
get_density_and_support = function(fun) {
for(i in seq(length(body(fun)))) {
if(length(body(fun)[[i]]) > 1) {
if(body(fun)[[i]][[2]] == 'attr(object, "density")') {
density = body(fun)[[i]][[3]]
} else if (body(fun)[[i]][[2]] == 'attr(object, "support")') {
support = body(fun)[[i]][[3]]
}
}
}
list(density = eval(parser(density)), support = support)
}
starts = new.env(hash = FALSE)
starts = lapply(univariateML::univariateML_models, function(name) {
fun = eval(parser(paste0("univariateML::ml", name)))
c(estimator = eval(parser(paste0("univariateML::ml",name))),
get_density_and_support(fun))
})
names(starts) = univariateML::univariateML_models
## Some densities have variable supports, which is not supported yet.
starts$pareto = list(
density = function(x, alpha) alpha*x^(-alpha-1),
estimator = function(x) 1/mean(log(x)),
support = c(1, Inf)
)
starts$power = NULL
## The uniform distribution is interpreted as uniform over the real line.
starts$unif= list(
density = function(x) rep(1, length(x)),
estimator = function(data) NULL,
support = c(-Inf, Inf)
)
starts$constant = starts$unif
starts$uniform = starts$unif
## Aliases for densities.
starts$gaussian = starts$norm
starts$normal = starts$norm
starts$exponential = starts$exp
starts$lognormal = starts$lnorm
starts$inverse_gaussian = starts$invgauss
starts$wald = starts$invgauss
## Make starts_environments with evaled support.
for(i in seq_along(starts)) {
starts[[i]]$support = eval(starts[[i]]$support)
}
starts_environment = as.environment(starts)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.