Nothing
univariateML_densities = intersect(
names(starts),
univariateML::univariateML_models
)
# There are some exceptions we won't test.
exceptions = c("pareto", "unif", "lomax")
univariateML_densities = setdiff(
univariateML_densities,
exceptions
)
generate_random = function(n, support) {
if (support == "c(-Inf, Inf)") return(rnorm(n))
if (support == "c(0, Inf)") return(rgamma(n, 4, 4))
if (support == "c(1, Inf)") return(rexp(n) + 1)
if (support == "c(0, 1)") return(runif(n))
stop()
}
# Actual testing for all non-exceptions.
set.seed(10)
n = 50
for(name in univariateML_densities) {
fun = eval(parser(paste0("univariateML::ml", name)))
support = deparse(get_density_and_support(fun)$support)
rands = generate_random(n, support)
kde = kdensity(rands, start = name)
coef(kde)
logLik(kde)
AIC(kde)
}
# For Lomax
rands = extraDistr::rlomax(n, 2, 3)
kde = kdensity(rands, start = "lomax")
coef(kde)
logLik(kde)
AIC(kde)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.