varianceMap: Spatial variance for the regression smoother.

Description Usage Arguments Details Value Author(s) References Examples

View source: R/varianceMap.R

Description

Computes the variance at each location for the non-parametric regression estimator.

Usage

1
varianceMap(formLatticeOutput, Z, PointPattern, M = 0.5, k)

Arguments

formLatticeOutput

An object from formLattice or editLattice.

Z

Vector of response values.

PointPattern

2-column matrix or data frame of locations.

M

Maximum probability that the random walk moves.

k

Number of steps in random walk.

Details

varianceMap computes an estimated variance at each node in the lattice, output in a form for mapping with contour. The approach is the Nadaraya-Watson kernel variance estimator: s^2∑ K^2(si,s0)/(∑ K(si,s0))^2. It's important to note that this should not be overused as a prediction error, as kernel estimators are not unbiased.

Value

VarianceMapOut object

Author(s)

Ronald P. Barry

References

Ronald P. Barry, Julie McIntyre. Estimating animal densities and home range in regions with irregular boundaries and holes: A lattice-based alternative to the kernel density estimator. Ecological Modelling 222 (2011) 1666-1672. <doi:10.1016/j.ecolmodel.2011.02.016>

Julie McIntyre, Ronald P. Barry (2018) A Lattice-Based Smoother for Regions with Irregular Boundaries and Holes. Journal of Computational and Graphical Statistics. In Press.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
data(nparExample)
attach(nparExample)
plot.new()
#  Simulate a response variable
index1 <- (grid2[,2]<0.8)|(grid2[,1]>0.6)
Z <- rep(NA,length(grid2[,1]))
n1 <- sum(index1)
n2 <- sum(!index1)
Z[index1] <- 3*grid2[index1,1] + 4 + rnorm(n1,0,sd=0.4)
Z[!index1] <- -2*grid2[!index1,1] + 4 + rnorm(n2,0,sd=0.4)
#
plot(polygon2,type="n")

polygon(polygon2)
points(grid2,pch=19,cex=0.5,xlim=c(-0.1,1))
text(grid2,labels=round(Z,1),pos=4,cex=0.5)
#
nodeFillingOutput <- nodeFilling(poly=polygon2, node_spacing=0.025)
plot(nodeFillingOutput)
formLatticeOutput <- formLattice(nodeFillingOutput)
plot(formLatticeOutput)
hold <- crossvalNparReg(formLatticeOutput,Z,
                       PointPattern=grid2,M=0.5,max_steps = 20)
var_map <- varianceMap(formLatticeOutput,Z,
             PointPattern=grid2,M=0.5,k=10)
plot(var_map)

latticeDensity documentation built on April 18, 2021, 5:06 p.m.