R/rlga.R

Defines functions rlga

Documented in rlga

rlga <- function(x, k, alpha=0.9, ...)  UseMethod("rlga")

"rlga.default" <- function(x, k, alpha=0.9, biter=NULL, niter=10, showall=FALSE, scale=TRUE,
                  nnode=NULL, silent=FALSE, ...){
    ## Scale the dataset (if required), otherwise parse to a matrix
    x <- as.matrix(x)
    if (any(is.na(x))) stop("missing data in 'x'")

    if(scale)
        x <- scale(x, center=FALSE, scale=sqrt(apply(x,2,var)))
    if (!is.numeric(x)) stop("'x' does not appear to be numeric.\n")
    n <- nrow(x); d <- ncol(x)

    ## Check alpha
    if (alpha < 0.5 || alpha > 1)
      stop("'alpha' must be in [0.5, 1].")

    ## Check the number of groups
    if (floor(k) != k)
      stop("'k' is not an integer")
    else if (k < 1)
      stop ("'k' is not greater than 0")
    else if (k == 1) {
      warning("'k' is equal to 1 - performing robust orthogonal regression")
      biter <- 100
    }
    else {
      ## Set the number of random starts (if not provided)
      if (is.null(biter))
        if(is.na(biter <- lga.NumberStarts(n, d, k, p=0.95)))
          stop("'biter' ill-specified. Rerun, setting 'biter'\n")
    }
    if (!silent)
        cat("RLGA Algorithm \nk =", k, "\tbiter =", biter, "\tniter =", niter, "\n")

    ## Choose the starting hyperplane coefficients for each biter
    hpcoef <- list()
    for (j in 1:biter){
        ## Choose starting clusters
        clindex <- matrix(sample(1:n, size=k*d, replace=FALSE), nrow=k)
        ## form initial hyperplanes - each row is a hyperplane
        hpcoef[[j]] <- matrix(NA, nrow=k, ncol=(d+1))
        for (i in 1:k)
            hpcoef[[j]][i,] <- lga.orthreg(x[clindex[i,],])
    }

    if(is.null(nnode)){
        ## not parallel
        outputsl <- lapply(hpcoef, rlga.iterate, x, k, d, n, niter, alpha)
    }
    else {
        ## parallel
        if (!silent) cat("Setting up nodes \n")
        if (!(require(snow))) stop("Can't find required packages: snow")
        cl <- makeCluster(nnode)
        clusterEvalQ(cl, library(lga))
        outputsl <- clusterApplyLB(cl, hpcoef, rlga.iterate, x, k, d, n, niter, alpha)
        stopCluster(cl)
        if (!silent) cat("Nodes closed \n")
    }

    outputs <- matrix(unlist(outputsl), ncol = biter, nrow = n + 2)

    ## Find the number of converged results
    nconverg <- sum(outputs[n+1,])
    if (nconverg == 0)
        warning("LGA failed to converge for any iteration\n")
    if (!showall){
        ## remove any columns with NAs
        outputs <- outputs[,complete.cases(t(outputs)), drop=FALSE]
        if (nconverg != 0)
            outputs <- outputs[,outputs[n+1,]==1, drop=FALSE]
        outputs <- outputs[, which.min(outputs[n+2,]), drop=FALSE]
        if(ncol(outputs) > 1)
            outputs <- lga.CheckUnique(outputs)
    }
    if (!silent) {
        cat("\nFinished.\n")
        if(showall) cat("\nReturning all outputs \n", "")
    }

    if (!showall){
      ## Fit hyerplane(s)
      hp <- matrix(NA, nrow=k, ncol=(d+1))
      for (i in 1:k)
        hp[i,] <- lga.orthreg(x[outputs[1:n,] == i,])
      ROSS <- lga.calculateROSS(hp, x, n, d, outputs[1:n,])
    }
    else {
      ROSS <- outputs[n+2,]
      hp <- NULL
    }

    fout <- list(cluster=outputs[1:n,], ROSS=ROSS, converged=outputs[n+1,], 
                 nconverg=nconverg, x=x, hpcoef=hp)

    attributes(fout) <- list(class=c("rlga","lga"), biter=biter, niter=niter, scaled=scale, k=k, alpha=alpha,
                             names=names(fout))
    return(fout)
}

"rlga.iterate" <-  function(hpcoef, xsc, k, d, n, niter, alpha){
    ## give the function the inital set of hyperplanes (in hpcoef)
    groups <- rlga.dodist(xsc, hpcoef, k, d, n, alpha)
    iter <- 0
    if (any(table(groups) < d) | (length(unique(groups)) < k))
        iter <- (niter+10)
    oldgroups <- 1
    converged <- FALSE
    while (!converged & iter < niter) {
        iter <- iter+1
        oldgroups <- groups
        for (i in 1:k){
            hpcoef[i,] <- lga.orthreg(xsc[groups==i,])
        }
        groups <- rlga.dodist(xsc, hpcoef, k, d, n, alpha)
        if (any(table(groups) < d) | (length(unique(groups)) < k))
            iter <- (niter+10) # if there aren't enough obs in a group
        if (all(oldgroups==groups)) converged <- TRUE
    }
    return(list(groups, converged, lga.calculateROSS(hpcoef, xsc, n, d, groups)))
}

"rlga.dodist" <- function(y, coeff, k, d, n, alpha){
  ## This function calculates the (orthogonal) Residuals for different hyerplanes,
  ## calculates which hyperplane each observation is closest to, and then takes the
  ## smallest alpha of them (setting the rest to zero)
  
    dist <- (y %*% t(coeff[,1:d, drop=FALSE])- matrix(coeff[,d+1, drop=FALSE], ncol=k, nrow=n, byrow=TRUE))^2
    mindist <- max.col(-dist, ties.method="first")
    mindist2 <- dist[cbind(1:n, mindist)]
    mindist[ mindist2 > quantile(mindist2, alpha) ] <- 0
    return(mindist)
}


"print.rlga" <- function(x, ...) { ## S3method for printing LGA class
    cat("Output from RLGA:\n\nDataset scaled =", attr(x, "scaled"), "\tk =",attr(x, "k"),
        "\tniter =",attr(x, "niter"), "\tbiter =", attr(x, "biter"), "\nAlpha =", attr(x, "alpha"),
        "\nNumber of converged =",x$nconverg, ifelse(length(x$ROSS)>1, "\nROSS =", "\nBest clustering has ROSS ="),
        x$ROSS,"\n")
}

Try the lga package in your browser

Any scripts or data that you put into this service are public.

lga documentation built on May 30, 2017, 3:07 a.m.