R/algorithm-noi.R

Defines functions prepare_sensor get_range range_correction

Documented in get_range range_correction

#' Intensity normalization algorithm
#'
#' This function is made to be used in \link{normalize_intensity}. It corrects intensity with a
#' range correction according to the formula (see references):
#' \deqn{I_{norm} = I_{obs} \left(\frac{R}{Rs}\right)^f}{Inorm = Iobs * (R/Rs)^f}
#' To achieve the range correction the position of the sensor must be known at different discrete times.
#' Using the 'gpstime' of each point, the position of the sensor is interpolated from the reference
#' and a range correction is applied.
#'
#' @param sensor `SpatialPointsDataDrame` or `sf` object containing the coordinates of
#' the sensor at different timepoints t. The time and elevation are stored as attributes
#' (default names are 'gpstime' and 'Z'). Z can also come from the geometry if the input records XYZ
#' coordinates. It can be computed with \link{track_sensor}.
#' @param Rs numeric. Range of reference.
#' @param f numeric. Exponent. Usually between 2 and 3 in vegetation contexts.
#' @param gpstime,elevation character. The name of the attributes that store the gpstime of the
#' position and the elevation of the sensor respectively. If the input contains 3 coordinates points,
#' `elevation` is not considered.
#' @param las an object of class LAS. \code{get_range()} is a regular function documented here for
#' convenience.
#' @export
#' @references
#' Gatziolis, D. (2011). Dynamic Range-based Intensity Normalization for Airborne, Discrete Return
#' Lidar Data of Forest Canopies. Photogrammetric Engineering & Remote Sensing, 77(3), 251–259.
#' https://doi.org/10.14358/pers.77.3.251
#' @examples
#' # A valid file properly populated
#' LASfile <- system.file("extdata", "Topography.laz", package="lidR")
#' las <- readLAS(LASfile)
#'
#' # pmin = 15 because it is an extremely tiny file
#' # strongly decimated to reduce its size. There are
#' # actually few multiple returns
#' sensor <- track_sensor(las, Roussel2020(pmin = 15))
#'
#' # Here the effect is virtually null because the size of
#' # the sample is too small to notice any effect of range
#' las <- normalize_intensity(las, range_correction(sensor, Rs = 2000))
#'
#' # This might be useful for some applications
#' R = get_range(las, sensor)
range_correction = function(sensor, Rs, f = 2.3, gpstime = "gpstime", elevation = "Z")
{
  assert_is_a_number(Rs)
  assert_is_a_number(f)
  assert_all_are_positive(Rs)
  assert_all_are_positive(f)

  Rs <- lazyeval::uq(Rs)
  f <- lazyeval::uq(f)
  gpstime <- lazyeval::uq(gpstime)
  elevation <- lazyeval::uq(elevation)

  fun = function(las)
  {
    assert_is_valid_context(LIDRCONTEXTNIT, "range_correction")
    fl <- prepare_sensor(sensor, gpstime, elevation, las)
    return(C_lasrangecorrection(las, fl, Rs, f))
  }

  class(fun) <- LIDRALGORITHMNIT
  return(fun)
}

#' @rdname range_correction
#' @export
get_range = function(las, sensor, gpstime = "gpstime", elevation = "Z")
{
  stopifnotlas(las)
  fl <- prepare_sensor(sensor, gpstime, elevation, las)
  R <- C_lasrange(las, fl)
  return(round(R, 3))
}

prepare_sensor = function(sensor, gpstime, elevation, las)
{
  if (is(sensor, "SpatialPointsDataFrame"))
    sensor <- sf::st_as_sf(sensor)

  if (!is(sensor, "sf"))
    stop("'ttops' is not a SpatialPointsDataFrame or sf")

  geom <- sf::st_geometry(sensor)
  if (!is(geom, "sfc_POINT"))
    stop("Only point geometry types are supported", call. = FALSE)

  if (!"gpstime" %in% names(las))
    stop("No 'gpstime' attribute found in las",   call. = FALSE)

  if (!"Intensity" %in% names(las))
    stop("No 'Intensity' attribute found", call. = FALSE)

  if (!gpstime %in% names(sensor))
    stop(glue::glue("No '{gpstime}' attribute found in sensor."), call. = FALSE)

  if (is(sf::st_geometry(sensor)[[1]], "XYZ"))
  {
    if (elevation %in% names(sensor))
      message("3 coordinates detected in the sensor positions, parameter 'elevation' is not considered.")

    elevation = NULL
  }

  fl <- sf::st_coordinates(sensor)
  fl <- data.table::data.table(fl)

  trange.las <- range(las[["gpstime"]])
  trange.sensor <- range(sensor[[gpstime]])

  if ((trange.las[1] < trange.sensor[1] - 4) || (trange.las[2] > trange.sensor[2] + 4))
    stop("'gpstime range from the sensor does not contain gpstime range from the point-cloud", call. = FALSE)

  if (!is.null(elevation))
  {
    if (!elevation %in% names(sensor))
      stop(glue::glue("No '{elevation}' attribute found in sensor."), call. = FALSE)

    fl[["Z"]] <- sensor[[elevation]]
  }
  else
  {
    if (ncol(fl) != 3)
      stop("There are only two dimensions in the coordinates of the sensor.", call. = FALSE)
  }

  fl[["gpstime"]] <- sensor[[gpstime]]

  fl <- data.table::data.table(fl)
  data.table::setorder(fl, gpstime)
  data.table::setnames(fl, c("X", "Y", "Z", "gpstime"))
  dup <- duplicated(fl, by = "gpstime")

  if (any(dup))
  {
    warning("Duplicated gpstime found. Duplicated sensor positions were removed.", call. = FALSE)
    fl <- fl[!dup]
  }

 x = diff(fl$gpstime) > 30
 conseq_true <- with(rle(x), sum(lengths[values] >= 2))
 if (x[1] == TRUE | conseq_true > 0)
   warning("Detection of isolated gpstime likely corresponding to flightlines with a single sensor position.", call. = FALSE)

  return(fl)
}

Try the lidR package in your browser

Any scripts or data that you put into this service are public.

lidR documentation built on Sept. 11, 2024, 5:21 p.m.