R/las_check.R

Defines functions .colourise .info .warn .fail .maybe .yes .no .skip .ok .h2 .h1 las_check.LAScatalog las_check.LAScluster las_check.LAS las_check.LASheader las_check

Documented in las_check

#' Inspect a LAS object
#'
#' Performs a deep inspection of a LAS or LAScatalog object and prints a report.\cr\cr
#' For a LAS object it checks:
#' \itemize{
#' \item if the point cloud is valid according to las specification
#' \item if the header is valid according to las specification
#' \item if the point cloud is in accordance with the header
#' \item if the point cloud has duplicated points and degenerated ground points
#' \item if gpstime and pulses are consistent
#' \item it the coordinate reference sytem is correctly recorded
#' \item if some pre-processing, such as normalization or ground filtering, is already done.
#' \item and much more
#' }
#' For a LAScatalog object it checks:
#' \itemize{
#' \item if the headers are consistent across files
#' \item if the files are overlapping
#' \item if some pre-processing, such as normalization, is already done.
#' }
#' For the pre-processing tests the function only makes an estimation and may not be correct.
#'
#' @template param-las
#' @param print logical. By default, prints a report and returns a \code{list} invisibly. If
#' \code{print = FALSE} the functions returns a \code{list} visibly and do not print the report.
#' @param ... Use \code{deep = TRUE} on a LAScatalog only. Instead of a shallow inspection it reads
#' all the files and performs a deep inspection.
#'
#' @return A list with three elements named \code{message}, \code{warnings} and \code{errors}. This list is returned
#' invisibly if \code{print = TRUE}. If \code{deep = TRUE} a nested list is returned with one element
#' per file.
#'
#' @examples
#' LASfile <- system.file("extdata", "Megaplot.laz", package="lidR")
#' las <- readLAS(LASfile)
#' las_check(las)
#' @export
#' @family las utilities
las_check = function(las, print = TRUE, ...)
{
  UseMethod("las_check", las)
}

#' @export
las_check.LASheader = function(las, print = TRUE, ...)
{
  xscale  <- las[["X scale factor"]]
  xoffset <- las[["X offset"]]
  yscale  <- las[["Y scale factor"]]
  yoffset <- las[["Y offset"]]
  zscale  <- las[["Z scale factor"]]
  zoffset <- las[["Z offset"]]

  head <- as.list(las)
  g    <- glue::glue

  warnings <- character(0)
  errors <- character(0)
  infos <- character(0)

  .h1("Checking the header")

  .h2("Checking header completeness...")

  msg = character(0)
  msg = c(msg, rlas::is_defined_offsets(head, "vector"))
  msg = c(msg, rlas::is_defined_scalefactors(head, "vector"))
  msg = c(msg, rlas::is_defined_version(head, "vector"))
  msg = c(msg, rlas::is_defined_pointformat(head, "vector"))
  msg = c(msg, rlas::is_defined_date(head, "vector"))
  msg = c(msg, rlas::is_defined_globalencoding(head, "vector"))

  .fail(msg)

  .h2("Checking scale factor validity...")

  .fail(rlas::is_valid_scalefactors(head, "vector"))

  .h2("Checking point data format ID validity...")

  .fail(rlas::is_valid_pointformat(head, "vector"))

  .h2("Checking extra bytes attributes validity...")

  .fail(rlas::is_valid_extrabytes(head, "vector"))

  .h2("Checking the bounding box validity...")

  bbx = c(head[["Min X"]], head[["Max X"]])
  bby = c(head[["Min Y"]], head[["Max Y"]])
  bbz = c(head[["Min Z"]], head[["Max Z"]])

  i <- fast_countunquantized(bbx, xscale, xoffset)
  j <- fast_countunquantized(bby, yscale, yoffset)
  k <- fast_countunquantized(bbz, zscale, zoffset)

  if (i + j + k > 0)
  {
    if (i > 0) .fail("Stored resolution of 'Min X' and/or 'Max X' not compatible with 'X offset' and 'X scale factor'")
    if (j > 0) .fail("Stored resolution of 'Min Y' and/or 'Max Y' not compatible with 'Y offset' and 'Y scale factor'")
    if (k > 0) .fail("Stored resolution of 'Min Z' and/or 'Max Z' not compatible with 'Z offset' and 'Z scale factor'")
  }
  else
  {
    .ok()
  }

  .h2("Checking coordinate reference system...")

  code    <- if (use_epsg(las)) epsg(las) else 0
  swkt    <- wkt(las)
  failure <- FALSE

  if (use_epsg(las) && swkt != "")
  { .fail("Global encoding WKT bits set to 0 but a WKT string found in the header") ; failure = TRUE }

  if (use_wktcs(las) && code != 0)
  { .fail("Global encoding WKT bits set to 1 but an epsg code found in the header") ; failure = TRUE }

  if (!failure)
    .ok()

  warnerr = list(
    messages = infos,
    warnings = warnings,
    errors = errors)

  if (print)
    return(invisible(warnerr))
  else
    return(warnerr)
}

#' @export
las_check.LAS = function(las, print = TRUE, ...)
{
  assert_is_a_bool(print)

  warnings <- character(0)
  errors <- character(0)
  infos <- character(0)
  g <- glue::glue

  #nocov start
  if (is_las_v3(las))
  {
    .h1("Checking format")
    .h2("Checking lidR format version is v4...")
    .fail("This LAS is in old format from lidR v3")
    las <- las_v3_repair(las)
  }
  #nocov end

  data <- payload(las)
  head <- as.list(header(las))

  xscale <- las[["X scale factor"]]
  xoffset <- las[["X offset"]]
  yscale <- las[["Y scale factor"]]
  yoffset <- las[["Y offset"]]
  zscale <- las[["Z scale factor"]]
  zoffset <- las[["Z offset"]]

  # ==== data =====

  .h1("Checking the data")

  if (npoints(las) == 0)
  {
    .fail(glue::glue("0 point, cannot check this object. Aborting."))
    warnerr = list(
      messages = infos,
      warnings = warnings,
      errors = errors)

    if (print)
      return(invisible(warnerr))
    else
      return(warnerr)
  }

  .h2("Checking coordinates...")

  .fail(rlas::is_defined_coordinates(data, "vector"))

  .h2("Checking coordinates type...")

  .fail(rlas::is_valid_XYZ(data, "vector"))

  .h2("Checking coordinates range...")

  xvalid_range <- storable_coordinate_range(xscale, xoffset)
  yvalid_range <- storable_coordinate_range(yscale, yoffset)
  zvalid_range <- storable_coordinate_range(zscale, zoffset)
  xrange <- range(data$X)
  yrange <- range(data$Y)
  zrange <- range(data$Z)

  failure = FALSE

  if (xrange[1] < xvalid_range[1] | xrange[2] > xvalid_range[2])
  {
    .fail(glue::glue("X coordinates range in [{xrange[1]}, {xrange[2]}] but storable range is  [{xvalid_range[1]}, {xvalid_range[2]}]"))
    failure = TRUE
  }

  if (yrange[1] < yvalid_range[1] | yrange[2] > yvalid_range[2])
  {
    .fail(glue::glue("Y coordinates range in [{yrange[1]}, {yrange[2]}] but storable range is  [{yvalid_range[1]}, {yvalid_range[2]}]"))
    failure = TRUE
  }

  if (zrange[1] < zvalid_range[1] | zrange[2] > zvalid_range[2])
  {
    .fail(glue::glue("Z coordinates range in [{zrange[1]}, {zrange[2]}] but storable range is  [{zvalid_range[1]}, {zvalid_range[2]}]"))
    failure = TRUE
  }

  if (failure == FALSE)
    .ok()

  .h2("Checking coordinates quantization...")

  i <- fast_countunquantized(las$X, xscale, xoffset)
  j <- fast_countunquantized(las$Y, yscale, yoffset)
  k <- fast_countunquantized(las$Z, zscale, zoffset)

  if (i + j + k > 0)
  {
    if (i > 0) .fail(glue::glue("{i} X coordinates were not stored with a resolution compatible with scale factor {xscale} and offset {xoffset}"))
    if (j > 0) .fail(glue::glue("{j} Y coordinates were not stored with a resolution compatible with scale factor {yscale} and offset {yoffset}"))
    if (k > 0) .fail(glue::glue("{k} Z coordinates were not stored with a resolution compatible with scale factor {zscale} and offset {zoffset}"))
  }
  else
  {
    .ok()
  }

  .h2("Checking attributes type...")

  msg = character(0)
  msg = c(msg, rlas::is_valid_gpstime(data, "vector"))
  msg = c(msg, rlas::is_valid_Intensity(data, "vector"))
  msg = c(msg, rlas::is_valid_ReturnNumber(data, head, "vector"))
  msg = c(msg, rlas::is_valid_EdgeOfFlightline(data, "vector"))
  msg = c(msg, rlas::is_valid_Classification(data, head, "vector"))
  msg = c(msg, rlas::is_valid_UserData(data, "vector"))
  msg = c(msg, rlas::is_valid_ScanAngleRank(data, "vector"))
  msg = c(msg, rlas::is_valid_ScanAngle(data, "vector"))
  msg = c(msg, rlas::is_valid_PointSourceID(data, "vector"))
  msg = c(msg, rlas::is_valid_RGB(data, "vector"))
  msg = c(msg, rlas::is_valid_NIR(data, "vector"))
  msg = c(msg, rlas::is_valid_SyntheticFlag(data, "vector"))
  msg = c(msg, rlas::is_valid_KeypointFlag(data, "vector"))
  msg = c(msg, rlas::is_valid_WithheldFlag(data, "vector"))

  .fail(msg)


  .h2("Checking ReturnNumber validity...")

  .warn(rlas::is_compliant_ReturnNumber(data, "vector"))

  .h2("Checking NumberOfReturns validity...")

  .warn(rlas::is_compliant_NumberOfReturns(data, "vector"))

  .h2("Checking ReturnNumber vs. NumberOfReturns...")

  .warn(rlas::is_compliant_ReturnNumber_vs_NumberOfReturns(data, "vector"))

  .h2("Checking RGB validity...")

  .warn(rlas::is_compliant_RGB(data, "vector"))

  .h2("Checking absence of NAs...")

  nas = data[, lapply(.SD, anyNA)]
  nas = unlist(as.list(nas))
  nas = nas[nas == TRUE]
  whichnas = names(nas)
  whichnas = paste(whichnas, collapse = ", ")

  if (length(nas) > 0)
  {
    string = paste("The following attributes contain NAs:", whichnas)
    .fail(string)
  }
  else
    .ok()

  .h2("Checking duplicated points...")

  s = sum(duplicated(data, by = c("X", "Y", "Z")))

  if (s > 0)
    .warn(g("{s} points are duplicated and share XYZ coordinates with other points"))
  else
    .ok()

  .h2("Checking degenerated ground points...")

  if (!is.null(data$Classification))
  {
    s = fast_count_equal(data$Classification, 2L)

    if (s > 0)
    {
      Classification <- NULL
      gnd = payload(filter_ground(las))

      s1 = duplicated(gnd, by = c("X", "Y", "Z"))
      s2 = duplicated(gnd, by = c("X", "Y"))  & !s1
      s1 = sum(s1)
      s2 = sum(s2)

      if (s1 == 0 & s2 == 0)
        .ok()
      else
      {
        if (s1 > 0)
          .warn(g("There were {s1} degenerated ground points. Some X Y Z coordinates were repeated"))

        if (s2 > 0)
          .warn(g("There were {s2} degenerated ground points. Some X Y coordinates were repeated but with different Z coordinates"))

      }
    }
    else
      .skip()
  }
  else
    .skip()

  .h2("Checking attribute population...")

  msg = character(0)

  if (!is.null(data[["gpstime"]]))
  {
    s = all(data[["gpstime"]] == 0)

    if (s)
      msg = c(msg, g("'gpstime' attribute is not populated"))
  }

  if (!is.null(data[["PointSourceID"]]))
  {
    s = fast_count_equal(data[["PointSourceID"]], 0L)

    if (s == nrow(data))
      msg = c(msg, g("'PointSourceID' attribute is not populated"))
  }

  if (!is.null(data[["ScanDirectionFlag"]]))
  {
    s = fast_count_equal(data[["ScanDirectionFlag"]], 0L)

    if (s == nrow(data))
      msg = c(msg, g("'ScanDirectionFlag' attribute is not populated"))
  }

  if (!is.null(data[["EdgeOfFlightline"]]))
  {
    s = fast_count_equal(data[["EdgeOfFlightline"]], 0L)

    if (s == nrow(data))
      msg = c(msg, g("'EdgeOfFlightline' attribute is not populated"))
  }

  .info(msg)

  .h2("Checking gpstime incoherances")

  if (!is.null(data[["gpstime"]]) && !is.null(data[["ReturnNumber"]]))
  {
    s1 <- C_check_gpstime(data[["gpstime"]], data[["ReturnNumber"]])
    if (s1 > 0)
      .fail(g("{s1} pulses (points with the same gpstime) have points with identical ReturnNumber"))
    else
      .ok()
  }
  else
    .skip()


  .h2("Checking flag attributes...")

  msg = character(0)

  if (!is.null(data[["Withheld_flag"]]))
  {
    s = sum(data[["Withheld_flag"]])

    if (s > 0)
      msg = c(msg, g("{s} points flagged 'withheld'"))
  }

  if (!is.null(data[["Synthetic_flag"]]))
  {
    s = sum(data[["Synthetic_flag"]])

    if (s > 0)
      msg = c(msg, g("{s} points flagged 'synthetic'"))
  }

  if (!is.null(data[["Keypoint_flag"]]))
  {
    s = sum(data[["Keypoint_flag"]])

    if (s > 0)
      msg = c(msg, g("{s} points flagged 'keypoint'"))
  }

  .info(msg)

  .h2("Checking user data attribute...")

  msg = character(0)

  if (!is.null(data[["UserData"]]))
  {
    s <- fast_count_equal(data[["UserData"]], 0L)
    s <- npoints(las) - s

    if (s > 0)
      .info(g("{s} points have a non 0 UserData attribute. This probably has a meaning"))
    else
      .ok()
  }
  else
  {
    .skip()
  }

  # ==== header ====

  head_chk <- las_check(header(las), print = print, ...)
  infos <- c(infos, head_chk[["infos"]])
  errors <- c(errors, head_chk[["errors"]])
  warnings <- c(warnings, head_chk[["warnings"]])

  # ==== data vs header ====

  .h1("Checking header vs data adequacy")

  .h2("Checking attributes vs. point format...")

  msg = character(0)
  msg = c(msg, rlas::is_NIR_in_valid_format(head, data, "vector"))
  msg = c(msg, rlas::is_gpstime_in_valid_format(head, data, "vector"))
  msg = c(msg, rlas::is_RGB_in_valid_format(head, data, "vector"))

  .fail(msg)

  .h2("Checking header bbox vs. actual content...")

  if (any(c("X", "Y", "Z") %in% whichnas)) {
    .skip()
  }
  else {
    msg = character(0)
    msg = c(msg, rlas::is_XY_larger_than_bbox(head, data, "vector"))
    msg = c(msg, rlas::is_XY_smaller_than_bbox(head, data, "vector"))
    msg = c(msg, rlas::is_Z_in_bbox(head, data, "vector"))
    .warn(msg)
  }

  .h2("Checking header number of points vs. actual content...")

  .warn(rlas::is_number_of_points_in_accordance_with_header(head, data, "vector"))

  .h2("Checking header return number vs. actual content...")

  .warn(rlas::is_number_of_points_by_return_in_accordance_with_header(head, data, "vector"))

  # ==== CRS ====

  .h1("Checking coordinate reference system...")

  .h2("Checking if the CRS was understood by R...")

  code    <- if (use_epsg(las)) epsg(las) else 0
  swkt    <- wkt(las)
  lasproj <- st_crs(las)
  failure <- FALSE

  if (use_epsg(las) && code != 0)
  {
    codeproj <- epsg2crs(code, fail = FALSE)

    if (is.na(codeproj))
    { .fail(glue::glue("EPSG code {code} unknown")) ; failure = TRUE }

    if (is.na(codeproj) && !is.na(lasproj))
    { .warn(glue::glue("EPSG code is unknown but a CRS found")) ; failure = TRUE }

    if (!is.na(codeproj) && is.na(lasproj))
    { .warn("ESPG code is valid but no CRS found") ; failure = TRUE }

    if (!is.na(codeproj) && !is.na(lasproj))
    {
      if (codeproj != lasproj)
      { .fail("ESPG code and CRS do not match") ; failure = TRUE }
    }

    if (!failure)
      .ok()
  }

  if (use_wktcs(las) && swkt != "")
  {
    codeproj = wkt2crs(swkt, fail = FALSE)

    if (is.na(codeproj))
    { .fail("WKT OGC CS not parsed") ; failure = TRUE }

    if (is.na(codeproj) & !is.na(lasproj))
    { .warn("WKT OGC CS not parsed but a CRS found") ; failure = TRUE }

    if (!is.na(codeproj) & is.na(lasproj))
    { .warn("WKT OGC CS is valid but no CRS found") ; failure = TRUE }

    if (!is.na(codeproj) & !is.na(lasproj))
    {
      if (codeproj != lasproj)
      { .fail("WKT OGC CS and CRS do not match") ; failure = TRUE }
    }

    if (!failure)
      .ok()
  }

  if (code == 0 & swkt == "")
  {
    if (!is.na(lasproj))
    { .warn("A CRS found but no CRS in the header") ; failure = TRUE }

    if (!failure)
      .ok()
  }

  # ==== Preprocessing ====

  .h1("Checking preprocessing already done ")

  .h2("Checking ground classification...")

  if (!is.null(data$Classification))
  {
    s = fast_count_equal(data$Classification, 2L)

    if (s > 0) {
      .yes()
      infos <- append(infos, "The point cloud is ground classified")
    }
    else {
      .no()
      infos <- append(infos, "The point cloud is not ground classified")
    }
  }
  else
    .skip()

  .h2("Checking normalization...")

  if (any(c("X", "Y", "Z") %in% whichnas)) {
    .skip()
  }
  else
  {
    min <- rasterize_fast(las, res = 20, method = "min")
    val <- raster_values(min)
    mean_min <- mean(abs(val), na.rm = TRUE)

    if (mean_min <= 0.1) {
      .yes()
      infos <- append(infos, "The point cloud is height normalized")
    }
    else if (mean_min > 0.1 & mean_min < 1) {
      .maybe()
      infos <- append(infos, "The point cloud is maybe height normalized")
    }
    else {
      .no()
      infos <- append(infos, "The point cloud is not height normalized")
    }
  }

  .h2("Checking negative outliers...")

  s = fast_countbelow(data$Z, 0)

  if (s > 0)
    .warn(g("{s} points below 0"))
  else
    .ok()

  .h2("Checking flightline classification...")

  if (!is.null(data$PointSourceID))
  {
    s = fast_count_equal(data$PointSourceID, 0L)

    if (s == nrow(data)) {
      .no()
    }
    else if (s > 0 & s < nrow(data)) {
      .maybe()
    }
    else {
      .yes()
    }
  }
  else
    .skip()

  # ==== Compression ====

  .h1("Checking compression")

  gz <- las_is_compressed(las)
  gz <- gz[gz == TRUE]

  .h2("Checking attribute compression...")

  if (length(gz) == 0)
  {
    if (utils::packageVersion("rlas") < "1.6.0")
      .info("Compression supported only from rlas 1.6.0")
    else
      .no()
  }
  else
  {
    if (print)
    {
      cat("\n")
      for (name in names(gz))
        cat("   - ", name, "is compressed\n")
    }
  }

  warnerr = list(
    messages = infos,
    warnings = warnings,
    errors = errors)

  if (print)
    return(invisible(warnerr))
  else
    return(warnerr)
}

#' @export
las_check.LAScluster = function(las, print = TRUE, ...)
{
  f <- basename(las@files)
  if (length(f) > 1) stop("Internal error: several files in the LAScluster. Please report this issue")

  if (print)
  {
    title <- glue::glue("Checking the file: {f}")
    n = nchar(title)
    header <- strrep("_", n)
    cat("\n\n")
    cat(header)
    cat("\n")
    cat(title)
    cat("\n")
    cat(header)
    cat("\n")
  }

  x <- readLAS(las)
  u <- las_check(x, print)

  if (print)
    return(invisible(u))
  else
    return(u)
}

#' @export
las_check.LAScatalog = function(las, print = TRUE, deep = FALSE, ...)
{
  assert_is_a_bool(print)
  assert_is_a_bool(deep)

  # Deep inspection of each file
  if (deep)
  {
    opt_chunk_size(las) <- 0
    opt_chunk_buffer(las) <- 0
    opt_select(las) <- "*"
    opt_filter(las) <- ""
    opt_output_files(las) <- ""
    opt_wall_to_wall(las) <- FALSE
    if (print) opt_progress(las) <-  FALSE
    out <- catalog_apply(las, las_check, print = print)
    names(out) <- basename(las@data[["filename"]])

    if (print)
      return(invisible(out))
    else
      return(out)
  }

  warnings <- character(0)
  errors <- character(0)
  infos <- character(0)
  g <- glue::glue

  # nocov start
  if (is_lascatalog_v3(las))
  {
    .h1("Checking format")
    .h2("Checking lidR format version is v4...")
    .fail("This LAScatalog is in old format from lidR v3")
    las <- lascatalog_v3_repair(las)
  }
  # nocov end

  data <- las@data

  # ==== data =====


  .h1("Checking headers consistency")

  .h2("Checking file version consistency...")

  s = length(unique(paste0(data$Version.Major, ".", data$Version.Minor)))

  if (s > 1L)
    .warn("Inconsistent file versions")
  else
    .ok()

  .h2("Checking scale consistency...")

  s1 = length(unique(data$X.scale.factor))
  s2 = length(unique(data$Y.scale.factor))
  s3 = length(unique(data$Z.scale.factor))

  if (s1 + s2 + s3 > 3L)
    .warn("Inconsistent scale factors")
  else
    .ok()

  .h2("Checking offset consistency...")

  s1 = length(unique(data$X.offset))
  s2 = length(unique(data$Y.offset))
  s3 = length(unique(data$Z.offset))

  if (s1 + s2 + s3 > 3L)
    .warn("Inconsistent offsets")
  else
    .ok()

  .h2("Checking point type consistency...")

  s = length(unique(data$Point.Data.Format.ID))

  if (s > 1L)
    .warn("Inconsistent point formats")
  else
    .ok()

  .h2("Checking VLR consistency...")

  s = length(unique(data$Number.of.variable.length.record))

  if (s > 1L)
    .fail("Inconsistent number of VLR")
  else
    .ok()

  .h2("Checking CRS consistency...")

  s = length(unique(data[["CRS"]]))

  if (s > 1L)
    .fail("Inconsistent CRS accross files")
  else
    .ok()

  .h1("Checking the headers")

  .h2("Checking scale factor validity...")

  failure = FALSE

  s = c(1,10,100,1000,10000)
  valid = c(1/s, 0.5/s, 0.25/s)

  if (any(!data$X.scale.factor %in% valid))
  { .fail("Invalid header: X scale factor should be factor ten of 0.1 or 0.5 or 0.25") ; failure = TRUE }

  if (any(!data$Y.scale.factor %in% valid))
  { .fail("Invalid header: Y scale factor should be factor ten of 0.1 or 0.5 or 0.25") ; failure = TRUE }

  if (any(!data$Z.scale.factor %in% valid))
  { .fail("Invalid header: Z scale factor should be factor ten of 0.1 or 0.5 or 0.25") ; failure = TRUE }

  if (!failure)
    .ok()

  .h2("Checking Point Data Format ID validity...")

  if (any(data$Point.Data.Format.ID %in% c(4,5,9,10)))
    .warn("Invalid headers: point data format not supported yet")
  else if (any(data$Point.Data.Format.ID < 0 | data$Point.Data.Format.ID > 10))
    .fail("Invalid header: point data format invalid")
  else
    .ok()

  .h1("Checking preprocessing already done ")

  .h2("Checking negative outliers...")

  s = sum(data$Min.Z < 0)

  if (s > 0)
    .warn(g("{s} file(s) with points below 0"))
  else
    .ok()

  .h2("Checking normalization...")

  mean_min = mean(abs(data$Min.Z))

  if (mean_min <= 0.1) {
    .yes()
    infos <<- append(infos, "The point cloud is height normalized")
  }
  else if (mean_min > 0.1 & mean_min < 2) {
    .maybe()
    infos <<- append(infos, "The point cloud is maybe height normalized")
  }
  else {
    .no()
    infos <<- append(infos, "The point cloud is not height normalized")
  }

  .h1("Checking the geometry")

  .h2("Checking overlapping tiles...")

  if (is.overlapping(las))
    .warn("Some tiles seem to overlap each other")
  else
    .ok()

  .h2("Checking point indexation...")

  if (is.indexed(las)) {
    .yes()
    #infos <- append(infos, "The LAS files are spatially indexed")
  }
  else {
    .no()
    infos <- append(infos, "The LAS files are not spatially indexed")
  }

  warnerr = list(
    messages = infos,
    warnings = warnings,
    errors = errors)

  if (print)
    return(invisible(warnerr))
  else
    return(warnerr)
}

.h1    <- function(x) {if (get("print", envir = parent.frame())) cat("\n", x)}
.h2    <- function(x) {if (get("print", envir = parent.frame())) cat("\n  -", x)}
.ok    <- function()  {if (get("print", envir = parent.frame())) cat(.colourise(" \u2713", "green"))}
.skip  <- function()  {if (get("print", envir = parent.frame())) cat(.colourise(" skipped", "light gray"))}
.no    <- function()  {if (get("print", envir = parent.frame())) cat(.colourise(" no", "red"))}
.yes   <- function()  {if (get("print", envir = parent.frame())) cat(.colourise(" yes", "green"))}
.maybe <- function()  {if (get("print", envir = parent.frame())) cat(.colourise(" maybe", "yellow"))}

.fail  <- function(msg) {
  print <- get("print", envir = parent.frame())
  if (print) {
    if (length(msg) == 0) {
      .ok()
    } else {
      for (x in msg) cat("\n", .colourise(glue::glue("   \U2717 {x}"), "red"))
    }
  }

  if (length(msg) > 0) {
    errors <- get("errors", envir = parent.frame())
    for (x in msg) errors <- append(errors, x)
    assign("errors", errors, envir = parent.frame())
  }
}

.warn  <- function(msg) {
  print <- get("print", envir = parent.frame())
  if (print) {
    if (length(msg) == 0) {
      .ok()
    } else {
      for (x in msg) cat("\n", .colourise(glue::glue("   \U26A0 {x}"), "yellow"))
    }
  }

  if (length(msg) > 0) {
    warnings <- get("warnings", envir = parent.frame())
    for (x in msg) warnings <- append(warnings, x)
    assign("warnings", warnings, envir = parent.frame())
  }
}

.info  <- function(msg) {
  print <- get("print", envir = parent.frame())
  if (print) {
    if (length(msg) == 0) {
      .ok()
    } else {
      for (x in msg) cat("\n", .colourise(glue::glue("   \U1F6C8 {x}"), "green"))
    }
  }

  if (length(msg) > 0) {
    infos <- get("infos", envir = parent.frame())
    for (x in msg) infos <- append(infos, x)
    assign("infos", infos, envir = parent.frame())
  }
}

# code from testthat
# https://github.com/r-lib/testthat/blob/717b02164def5c1f027d3a20b889dae35428b6d7/R/colour-text.r
# nocov start
.colourise <- function(text, fg = "black", bg = NULL) {
  term <- Sys.getenv()["TERM"]
  colour_terms <- c("xterm-color","xterm-256color", "screen", "screen-256color")

  if (nchar(Sys.getenv('R_TESTS')) != 0 || !any(term %in% colour_terms, na.rm = TRUE)) {
    return(text)
  }

  .fg_colours <- c(
    "black" = "0;30",
    "blue" = "0;34",
    "green" = "0;32",
    "cyan" = "0;36",
    "red" = "0;31",
    "purple" = "0;35",
    "brown" = "0;33",
    "light gray" = "0;37",
    "dark gray" = "1;30",
    "light blue" = "1;34",
    "light green" = "1;32",
    "light cyan" = "1;36",
    "light red" = "1;31",
    "light purple" = "1;35",
    "yellow" = "1;33",
    "white" = "1;37"
  )

  .bg_colours <- c(
    "black" = "40",
    "red" = "41",
    "green" = "42",
    "brown" = "43",
    "blue" = "44",
    "purple" = "45",
    "cyan" = "46",
    "light gray" = "47"
  )

  col_escape <- function(col) {
    paste0("\033[", col, "m")
  }

  col <- .fg_colours[tolower(fg)]
  if (!is.null(bg)) {
    col <- paste0(col, .bg_colours[tolower(bg)], sep = ";")
  }

  init <- col_escape(col)
  reset <- col_escape("0")
  paste0(init, text, reset)
}
# nocov end

Try the lidR package in your browser

Any scripts or data that you put into this service are public.

lidR documentation built on Sept. 11, 2024, 5:21 p.m.