Nothing
#' @name lgb.train
#' @title Main training logic for LightGBM
#' @description Low-level R interface to train a LightGBM model. Unlike \code{\link{lightgbm}},
#' this function is focused on performance (e.g. speed, memory efficiency). It is also
#' less likely to have breaking API changes in new releases than \code{\link{lightgbm}}.
#' @inheritParams lgb_shared_params
#' @param valids a list of \code{lgb.Dataset} objects, used for validation
#' @param record Boolean, TRUE will record iteration message to \code{booster$record_evals}
#' @param colnames Deprecated. See "Deprecated Arguments" section below.
#' @param categorical_feature Deprecated. See "Deprecated Arguments" section below.
#' @param callbacks List of callback functions that are applied at each iteration.
#' @param reset_data Boolean, setting it to TRUE (not the default value) will transform the
#' booster model into a predictor model which frees up memory and the
#' original datasets
#' @inheritSection lgb_shared_params Early Stopping
#' @return a trained booster model \code{lgb.Booster}.
#'
#' @examples
#' \donttest{
#' \dontshow{setLGBMthreads(2L)}
#' \dontshow{data.table::setDTthreads(1L)}
#' data(agaricus.train, package = "lightgbm")
#' train <- agaricus.train
#' dtrain <- lgb.Dataset(train$data, label = train$label)
#' data(agaricus.test, package = "lightgbm")
#' test <- agaricus.test
#' dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
#' params <- list(
#' objective = "regression"
#' , metric = "l2"
#' , min_data = 1L
#' , learning_rate = 1.0
#' , num_threads = 2L
#' )
#' valids <- list(test = dtest)
#' model <- lgb.train(
#' params = params
#' , data = dtrain
#' , nrounds = 5L
#' , valids = valids
#' , early_stopping_rounds = 3L
#' )
#' }
#'
#' @section Deprecated Arguments:
#'
#' A future release of \code{lightgbm} will remove support for passing arguments
#' \code{'categorical_feature'} and \code{'colnames'}. Pass those things to
#' \code{lgb.Dataset} instead.
#'
#' @export
lgb.train <- function(params = list(),
data,
nrounds = 100L,
valids = list(),
obj = NULL,
eval = NULL,
verbose = 1L,
record = TRUE,
eval_freq = 1L,
init_model = NULL,
colnames = NULL,
categorical_feature = NULL,
early_stopping_rounds = NULL,
callbacks = list(),
reset_data = FALSE,
serializable = TRUE) {
# validate inputs early to avoid unnecessary computation
if (nrounds <= 0L) {
stop("nrounds should be greater than zero")
}
if (!.is_Dataset(x = data)) {
stop("lgb.train: data must be an lgb.Dataset instance")
}
if (length(valids) > 0L) {
if (!identical(class(valids), "list") || !all(vapply(valids, .is_Dataset, logical(1L)))) {
stop("lgb.train: valids must be a list of lgb.Dataset elements")
}
evnames <- names(valids)
if (is.null(evnames) || !all(nzchar(evnames))) {
stop("lgb.train: each element of valids must have a name")
}
}
# raise deprecation warnings if necessary
# ref: https://github.com/microsoft/LightGBM/issues/6435
args <- names(match.call())
if ("categorical_feature" %in% args) {
.emit_dataset_kwarg_warning("categorical_feature", "lgb.train")
}
if ("colnames" %in% args) {
.emit_dataset_kwarg_warning("colnames", "lgb.train")
}
# set some parameters, resolving the way they were passed in with other parameters
# in `params`.
# this ensures that the model stored with Booster$save() correctly represents
# what was passed in
params <- .check_wrapper_param(
main_param_name = "verbosity"
, params = params
, alternative_kwarg_value = verbose
)
params <- .check_wrapper_param(
main_param_name = "num_iterations"
, params = params
, alternative_kwarg_value = nrounds
)
params <- .check_wrapper_param(
main_param_name = "metric"
, params = params
, alternative_kwarg_value = NULL
)
params <- .check_wrapper_param(
main_param_name = "objective"
, params = params
, alternative_kwarg_value = obj
)
params <- .check_wrapper_param(
main_param_name = "early_stopping_round"
, params = params
, alternative_kwarg_value = early_stopping_rounds
)
early_stopping_rounds <- params[["early_stopping_round"]]
# extract any function objects passed for objective or metric
fobj <- NULL
if (is.function(params$objective)) {
fobj <- params$objective
params$objective <- "none"
}
# If eval is a single function, store it as a 1-element list
# (for backwards compatibility). If it is a list of functions, store
# all of them. This makes it possible to pass any mix of strings like "auc"
# and custom functions to eval
params <- .check_eval(params = params, eval = eval)
eval_functions <- list(NULL)
if (is.function(eval)) {
eval_functions <- list(eval)
}
if (methods::is(eval, "list")) {
eval_functions <- Filter(
f = is.function
, x = eval
)
}
# Init predictor to empty
predictor <- NULL
# Check for boosting from a trained model
if (is.character(init_model)) {
predictor <- Predictor$new(modelfile = init_model)
} else if (.is_Booster(x = init_model)) {
predictor <- init_model$to_predictor()
}
# Set the iteration to start from / end to (and check for boosting from a trained model, again)
begin_iteration <- 1L
if (!is.null(predictor)) {
begin_iteration <- predictor$current_iter() + 1L
}
end_iteration <- begin_iteration + params[["num_iterations"]] - 1L
# pop interaction_constraints off of params. It needs some preprocessing on the
# R side before being passed into the Dataset object
interaction_constraints <- params[["interaction_constraints"]]
params["interaction_constraints"] <- NULL
# Construct datasets, if needed
data$update_params(params = params)
if (!is.null(categorical_feature)) {
data$set_categorical_feature(categorical_feature)
}
data$construct()
# Check interaction constraints
cnames <- NULL
if (!is.null(colnames)) {
cnames <- colnames
} else if (!is.null(data$get_colnames())) {
cnames <- data$get_colnames()
}
params[["interaction_constraints"]] <- .check_interaction_constraints(
interaction_constraints = interaction_constraints
, column_names = cnames
)
# Update parameters with parsed parameters
data$update_params(params)
# Create the predictor set
data$.__enclos_env__$private$set_predictor(predictor)
# Write column names
if (!is.null(colnames)) {
data$set_colnames(colnames)
}
valid_contain_train <- FALSE
train_data_name <- "train"
reduced_valid_sets <- list()
# Parse validation datasets
if (length(valids) > 0L) {
for (key in names(valids)) {
# Use names to get validation datasets
valid_data <- valids[[key]]
# Check for duplicate train/validation dataset
if (identical(data, valid_data)) {
valid_contain_train <- TRUE
train_data_name <- key
next
}
# Update parameters, data
valid_data$update_params(params)
valid_data$set_reference(data)
reduced_valid_sets[[key]] <- valid_data
}
}
# Add printing log callback
if (params[["verbosity"]] > 0L && eval_freq > 0L) {
callbacks <- .add_cb(
cb_list = callbacks
, cb = cb_print_evaluation(period = eval_freq)
)
}
# Add evaluation log callback
if (record && length(valids) > 0L) {
callbacks <- .add_cb(
cb_list = callbacks
, cb = cb_record_evaluation()
)
}
# Did user pass parameters that indicate they want to use early stopping?
using_early_stopping <- !is.null(early_stopping_rounds) && early_stopping_rounds > 0L
boosting_param_names <- .PARAMETER_ALIASES()[["boosting"]]
using_dart <- any(
sapply(
X = boosting_param_names
, FUN = function(param) {
identical(params[[param]], "dart")
}
)
)
# Cannot use early stopping with 'dart' boosting
if (using_dart) {
warning("Early stopping is not available in 'dart' mode.")
using_early_stopping <- FALSE
# Remove the cb_early_stop() function if it was passed in to callbacks
callbacks <- Filter(
f = function(cb_func) {
!identical(attr(cb_func, "name"), "cb_early_stop")
}
, x = callbacks
)
}
# If user supplied early_stopping_rounds, add the early stopping callback
if (using_early_stopping) {
callbacks <- .add_cb(
cb_list = callbacks
, cb = cb_early_stop(
stopping_rounds = early_stopping_rounds
, first_metric_only = isTRUE(params[["first_metric_only"]])
, verbose = params[["verbosity"]] > 0L
)
)
}
cb <- .categorize_callbacks(cb_list = callbacks)
# Construct booster with datasets
booster <- Booster$new(params = params, train_set = data)
if (valid_contain_train) {
booster$set_train_data_name(name = train_data_name)
}
for (key in names(reduced_valid_sets)) {
booster$add_valid(data = reduced_valid_sets[[key]], name = key)
}
# Callback env
env <- CB_ENV$new()
env$model <- booster
env$begin_iteration <- begin_iteration
env$end_iteration <- end_iteration
# Start training model using number of iterations to start and end with
for (i in seq.int(from = begin_iteration, to = end_iteration)) {
# Overwrite iteration in environment
env$iteration <- i
env$eval_list <- list()
# Loop through "pre_iter" element
for (f in cb$pre_iter) {
f(env)
}
# Update one boosting iteration
booster$update(fobj = fobj)
# Prepare collection of evaluation results
eval_list <- list()
# Collection: Has validation dataset?
if (length(valids) > 0L) {
# Get evaluation results with passed-in functions
for (eval_function in eval_functions) {
# Validation has training dataset?
if (valid_contain_train) {
eval_list <- append(eval_list, booster$eval_train(feval = eval_function))
}
eval_list <- append(eval_list, booster$eval_valid(feval = eval_function))
}
# Calling booster$eval_valid() will get
# evaluation results with the metrics in params$metric by calling LGBM_BoosterGetEval_R",
# so need to be sure that gets called, which it wouldn't be above if no functions
# were passed in
if (length(eval_functions) == 0L) {
if (valid_contain_train) {
eval_list <- append(eval_list, booster$eval_train(feval = eval_function))
}
eval_list <- append(eval_list, booster$eval_valid(feval = eval_function))
}
}
# Write evaluation result in environment
env$eval_list <- eval_list
# Loop through env
for (f in cb$post_iter) {
f(env)
}
# Check for early stopping and break if needed
if (env$met_early_stop) break
}
# check if any valids were given other than the training data
non_train_valid_names <- names(valids)[!(names(valids) == train_data_name)]
first_valid_name <- non_train_valid_names[1L]
# When early stopping is not activated, we compute the best iteration / score ourselves by
# selecting the first metric and the first dataset
if (record && length(non_train_valid_names) > 0L && is.na(env$best_score)) {
# when using a custom eval function, the metric name is returned from the
# function, so figure it out from record_evals
if (!is.null(eval_functions[1L])) {
first_metric <- names(booster$record_evals[[first_valid_name]])[1L]
} else {
first_metric <- booster$.__enclos_env__$private$eval_names[1L]
}
.find_best <- which.min
if (isTRUE(env$eval_list[[1L]]$higher_better[1L])) {
.find_best <- which.max
}
booster$best_iter <- unname(
.find_best(
unlist(
booster$record_evals[[first_valid_name]][[first_metric]][[.EVAL_KEY()]]
)
)
)
booster$best_score <- booster$record_evals[[first_valid_name]][[first_metric]][[.EVAL_KEY()]][[booster$best_iter]]
}
# Check for booster model conversion to predictor model
if (reset_data) {
# Store temporarily model data elsewhere
booster_old <- list(
best_iter = booster$best_iter
, best_score = booster$best_score
, record_evals = booster$record_evals
)
# Reload model
booster <- lgb.load(model_str = booster$save_model_to_string())
booster$best_iter <- booster_old$best_iter
booster$best_score <- booster_old$best_score
booster$record_evals <- booster_old$record_evals
}
if (serializable) {
booster$save_raw()
}
return(booster)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.