Nothing
.is_Booster <- function(x) {
return(all(c("R6", "lgb.Booster") %in% class(x))) # nolint: class_equals
}
.is_Dataset <- function(x) {
return(all(c("R6", "lgb.Dataset") %in% class(x))) # nolint: class_equals
}
.is_Predictor <- function(x) {
return(all(c("R6", "lgb.Predictor") %in% class(x))) # nolint: class_equals
}
.is_null_handle <- function(x) {
if (is.null(x)) {
return(TRUE)
}
return(
isTRUE(.Call(LGBM_HandleIsNull_R, x))
)
}
.params2str <- function(params) {
if (!identical(class(params), "list")) {
stop("params must be a list")
}
names(params) <- gsub(".", "_", names(params), fixed = TRUE)
param_names <- names(params)
ret <- list()
# Perform key value join
for (i in seq_along(params)) {
# If a parameter has multiple values, join those values together with commas.
# trimws() is necessary because format() will pad to make strings the same width
val <- paste0(
trimws(
format(
x = unname(params[[i]])
, scientific = FALSE
)
)
, collapse = ","
)
if (nchar(val) <= 0L) next # Skip join
# Join key value
pair <- paste0(c(param_names[[i]], val), collapse = "=")
ret <- c(ret, pair)
}
if (length(ret) == 0L) {
return("")
}
return(paste0(ret, collapse = " "))
}
# [description]
#
# Besides applying checks, this function
#
# 1. turns feature *names* into 1-based integer positions, then
# 2. adds an extra list element with skipped features, then
# 3. turns 1-based integer positions into 0-based positions, and finally
# 4. collapses the values of each list element into a string like "[0, 1]".
#
.check_interaction_constraints <- function(interaction_constraints, column_names) {
if (is.null(interaction_constraints)) {
return(list())
}
if (!identical(class(interaction_constraints), "list")) {
stop("interaction_constraints must be a list")
}
column_indices <- seq_along(column_names)
# Convert feature names to 1-based integer positions and apply checks
for (j in seq_along(interaction_constraints)) {
constraint <- interaction_constraints[[j]]
if (is.character(constraint)) {
constraint_indices <- match(constraint, column_names)
} else if (is.numeric(constraint)) {
constraint_indices <- as.integer(constraint)
} else {
stop("every element in interaction_constraints must be a character vector or numeric vector")
}
# Features outside range?
bad <- !(constraint_indices %in% column_indices)
if (any(bad)) {
stop(
"unknown feature(s) in interaction_constraints: "
, toString(sQuote(constraint[bad], q = "'"))
)
}
interaction_constraints[[j]] <- constraint_indices
}
# Add missing features as new interaction set
remaining_indices <- setdiff(
column_indices, sort(unique(unlist(interaction_constraints)))
)
if (length(remaining_indices) > 0L) {
interaction_constraints <- c(
interaction_constraints, list(remaining_indices)
)
}
# Turn indices 0-based and convert to string
for (j in seq_along(interaction_constraints)) {
interaction_constraints[[j]] <- paste0(
"[", paste0(interaction_constraints[[j]] - 1L, collapse = ","), "]"
)
}
return(interaction_constraints)
}
# [description]
# Take any character values from eval and store them in params$metric.
# This has to account for the fact that `eval` could be a character vector,
# a function, a list of functions, or a list with a mix of strings and
# functions
.check_eval <- function(params, eval) {
if (is.null(params$metric)) {
params$metric <- list()
} else if (is.character(params$metric)) {
params$metric <- as.list(params$metric)
}
# if 'eval' is a character vector or list, find the character
# elements and add them to 'metric'
if (!is.function(eval)) {
for (i in seq_along(eval)) {
element <- eval[[i]]
if (is.character(element)) {
params$metric <- append(params$metric, element)
}
}
}
# If more than one character metric was given, then "None" should
# not be included
if (length(params$metric) > 1L) {
params$metric <- Filter(
f = function(metric) {
!(metric %in% .NO_METRIC_STRINGS())
}
, x = params$metric
)
}
# duplicate metrics should be filtered out
params$metric <- as.list(unique(unlist(params$metric)))
return(params)
}
# [description]
#
# Resolve differences between passed-in keyword arguments, parameters,
# and parameter aliases. This function exists because some functions in the
# package take in parameters through their own keyword arguments other than
# the `params` list.
#
# If the same underlying parameter is provided multiple
# ways, the first item in this list is used:
#
# 1. the main (non-alias) parameter found in `params`
# 2. the alias with the highest priority found in `params`
# 3. the keyword argument passed in
#
# For example, "num_iterations" can also be provided to lgb.train()
# via keyword "nrounds". lgb.train() will choose one value for this parameter
# based on the first match in this list:
#
# 1. params[["num_iterations]]
# 2. the highest priority alias of "num_iterations" found in params
# 3. the nrounds keyword argument
#
# If multiple aliases are found in `params` for the same parameter, they are
# all removed before returning `params`.
#
# [return]
# params with num_iterations set to the chosen value, and other aliases
# of num_iterations removed
.check_wrapper_param <- function(main_param_name, params, alternative_kwarg_value) {
aliases <- .PARAMETER_ALIASES()[[main_param_name]]
aliases_provided <- aliases[aliases %in% names(params)]
aliases_provided <- aliases_provided[aliases_provided != main_param_name]
# prefer the main parameter
if (!is.null(params[[main_param_name]])) {
for (param in aliases_provided) {
params[[param]] <- NULL
}
return(params)
}
# if the main parameter wasn't provided, prefer the first alias
if (length(aliases_provided) > 0L) {
first_param <- aliases_provided[1L]
params[[main_param_name]] <- params[[first_param]]
for (param in aliases_provided) {
params[[param]] <- NULL
}
return(params)
}
# if not provided in params at all, use the alternative value provided
# through a keyword argument from lgb.train(), lgb.cv(), etc.
params[[main_param_name]] <- alternative_kwarg_value
return(params)
}
#' @importFrom parallel detectCores
.get_default_num_threads <- function() {
if (requireNamespace("RhpcBLASctl", quietly = TRUE)) { # nolint: undesirable_function
return(RhpcBLASctl::get_num_cores())
} else {
msg <- "Optional package 'RhpcBLASctl' not found."
cores <- 0L
if (Sys.info()["sysname"] != "Linux") {
cores <- parallel::detectCores(logical = FALSE)
if (is.na(cores) || cores < 0L) {
cores <- 0L
}
}
if (cores == 0L) {
msg <- paste(msg, "Will use default number of OpenMP threads.", sep = " ")
} else {
msg <- paste(msg, "Detection of CPU cores might not be accurate.", sep = " ")
}
warning(msg)
return(cores)
}
}
.equal_or_both_null <- function(a, b) {
if (is.null(a)) {
if (!is.null(b)) {
return(FALSE)
}
return(TRUE)
} else {
if (is.null(b)) {
return(FALSE)
}
return(a == b)
}
}
# ref: https://github.com/microsoft/LightGBM/issues/6435
.emit_dataset_kwarg_warning <- function(calling_function, argname) {
msg <- sprintf(
paste0(
"Argument '%s' to %s() is deprecated and will be removed in a future release. "
, "Set '%s' with lgb.Dataset() instead. "
, "See https://github.com/microsoft/LightGBM/issues/6435."
)
, argname
, calling_function
, argname
)
warning(msg)
return(invisible(NULL))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.