Nothing
#More informative and cleaner version of base::match.arg. From WeightIt with edits.
match_arg <- function(arg, choices, several.ok = FALSE) {
#Replaces match.arg() but gives cleaner error message and processing
#of arg.
if (missing(arg))
stop("No argument was supplied to match_arg.", call. = FALSE)
arg.name <- deparse1(substitute(arg))
if (missing(choices)) {
formal.args <- formals(sys.function(sysP <- sys.parent()))
choices <- eval(formal.args[[as.character(substitute(arg))]],
envir = sys.frame(sysP))
}
if (is.null(arg)) return(choices[1L])
if (!is.character(arg))
chk::err(sprintf("the argument to `%s` must be NULL or a character vector", arg.name))
if (!several.ok) {
if (identical(arg, choices)) return(arg[1L])
if (length(arg) > 1L) {
chk::err(sprintf("the argument to `%s` must be of length 1", arg.name))
}
}
else if (length(arg) == 0) {
chk::err(sprintf("the argument to `%s` must be of length >= 1", arg.name))
}
i <- pmatch(arg, choices, nomatch = 0L, duplicates.ok = TRUE)
if (all(i == 0L))
chk::err(sprintf("the argument to `%s` should be %s%s",
arg.name,
ngettext(length(choices), "", if (several.ok) "at least one of " else "one of "),
word_list(choices, and.or = "or", quotes = 2)))
i <- i[i > 0L]
choices[i]
}
#Function to turn a vector into a string with "," and "and" or "or" for clean messages. 'and.or'
#controls whether words are separated by "and" or "or"; 'is.are' controls whether the list is
#followed by "is" or "are" (to avoid manually figuring out if plural); quotes controls whether
#quotes should be placed around words in string. From WeightIt.
word_list <- function(word.list = NULL, and.or = c("and", "or"), is.are = FALSE, quotes = FALSE) {
#When given a vector of strings, creates a string of the form "a and b"
#or "a, b, and c"
#If is.are, adds "is" or "are" appropriately
L <- length(word.list)
word.list <- add_quotes(word.list, quotes)
if (L == 0) {
out <- ""
attr(out, "plural") <- FALSE
}
else {
word.list <- word.list[!word.list %in% c(NA_character_, "")]
L <- length(word.list)
if (L == 0) {
out <- ""
attr(out, "plural") <- FALSE
}
else if (L == 1) {
out <- word.list
if (is.are) out <- paste(out, "is")
attr(out, "plural") <- FALSE
}
else {
and.or <- match_arg(and.or, c("and", "or"))
if (L == 2) {
out <- paste(word.list, collapse = paste0(" ", and.or," "))
}
else {
out <- paste(paste(word.list[seq_len(L-1)], collapse = ", "),
word.list[L], sep = paste0(", ", and.or," "))
}
if (is.are) out <- paste(out, "are")
attr(out, "plural") <- TRUE
}
}
out
}
#Add quotation marks around a string.
add_quotes <- function(x, quotes = 2L) {
if (!isFALSE(quotes)) {
if (is.character(quotes)) x <- paste0(quotes, x, quotes)
else if (isTRUE(quotes) || as.integer(quotes) == 2L) x <- paste0("\"", x, "\"")
else if (as.integer(quotes) == 1L) x <- paste0("\'", x, "\'")
else stop("'quotes' must be a string, boolean, 1, or 2.")
}
x
}
#Effective sample size
ESS <- function(w) {
# sum(abs(w))^2/sum(w^2)
sum(w)^2/sum(w^2)
}
#Weighted colMeans
colMeans_w <- function(mat, w = NULL, subset = NULL) {
if (length(subset) != 0) {
mat <- mat[subset,,drop = FALSE]
if (length(w) != 0) w <- w[subset]
}
if (length(w) == 0) return(colSums(mat)/nrow(mat))
colSums(mat * w)/sum(w)
}
#Weighted mean (faster than weighted.mean())
mean_w <- function(x, w = NULL, subset = NULL) {
if (length(subset) != 0) {
x <- x[subset]
if (length(w) != 0) w <- w[subset]
}
if (length(w) == 0) return(sum(x)/length(x))
sum(x * w)/sum(w)
}
#(Weighted) variance that uses special formula for binary variables
var_w <- function(x, bin.var = NULL, w = NULL, subset = NULL) {
if (is.null(bin.var)) bin.var <- all(x == 0 | x == 1)
if (length(subset) != 0) {
x <- x[subset]
if (length(w) != 0) w <- w[subset]
}
if (is.null(w)) w <- rep(1, length(x))
w <- w / sum(w) #weights normalized to sum to 1
mx <- sum(w * x) #weighted mean
if (bin.var) {
v <- mx*(1-mx)
}
else {
#Reliability weights variance; same as cov.wt()
v <- sum(w * (x - mx)^2)/(1 - sum(w^2))
}
abs(v)
}
#Determine whether a character vector can be coerced to numeric
can_str2num <- function(x) {
nas <- is.na(x)
suppressWarnings(x_num <- as.numeric(as.character(x[!nas])))
!anyNA(x_num)
}
#Cleanly coerces a character vector to numeric; best to use after can_str2num()
str2num <- function(x) {
nas <- is.na(x)
suppressWarnings(x_num <- as.numeric(as.character(x)))
x_num[nas] <- NA
x_num
}
#Clean printing of data frames with numeric and NA elements.
round_df_char <- function(df, digits, pad = "0", na_vals = ".") {
#Digits is passed to round(). pad is used to replace trailing zeros so decimal
#lines up. Should be "0" or " "; "" (the empty string) un-aligns decimals.
#na_vals is what NA should print as.
if (NROW(df) == 0 || NCOL(df) == 0) return(df)
if (!is.data.frame(df)) {
df <- as.data.frame.matrix(df, stringsAsFactors = FALSE)
}
rn <- rownames(df)
cn <- colnames(df)
infs <- array(FALSE, dim = dim(df))
# o.negs <- array(FALSE, dim = dim(df))
nas <- is.na(df)
nums <- vapply(df, is.numeric, logical(1))
infs[,nums] <- vapply(which(nums), function(i) !nas[,i] & !is.finite(df[[i]]), logical(NROW(df)))
for (i in which(!nums)) {
if (can_str2num(df[[i]])) {
df[[i]] <- str2num(df[[i]])
nums[i] <- TRUE
}
}
# o.negs[,nums] <- !nas[,nums] & df[nums] < 0 & round(df[nums], digits) == 0
df[nums] <- round(df[nums], digits = digits)
for (i in which(nums)) {
df[[i]] <- format(df[[i]], scientific = FALSE, justify = "none", trim = TRUE,
drop0trailing = !identical(as.character(pad), "0"))
if (!identical(as.character(pad), "0") && any(grepl(".", df[[i]], fixed = TRUE))) {
s <- strsplit(df[[i]], ".", fixed = TRUE)
lengths <- lengths(s)
digits.r.of.. <- rep(0, NROW(df))
digits.r.of..[lengths > 1] <- nchar(vapply(s[lengths > 1], `[[`, character(1L), 2))
max.dig <- max(digits.r.of..)
dots <- ifelse(lengths > 1, "", if (as.character(pad) != "") "." else pad)
pads <- vapply(max.dig - digits.r.of.., function(n) paste(rep(pad, n), collapse = ""), character(1L))
df[[i]] <- paste0(df[[i]], dots, pads)
}
}
# df[o.negs] <- paste0("-", df[o.negs]) #Requested to remove to prevent -0
# Insert NA placeholders
df[nas] <- na_vals
df[infs] <- "N/A"
if (length(rn) > 0) rownames(df) <- rn
if (length(cn) > 0) names(df) <- cn
attr(df, "na_vals") <- na_vals
df
}
#Adds perentheses around a number in SD columns; e.g., 5.46 -> (5.46)
add_peren_to_sd <- function(df) {
for (i in names(df)) {
if (startsWith(i, "SD") && !all(df[[i]] == attr(df, "na_vals"))) {
df[[i]][df[[i]] != attr(df, "na_vals")] <- sprintf("(%s)", df[[i]][df[[i]] != attr(df, "na_vals")])
}
}
df
}
#Transform number to subscript
num2sub <- function(x) {
x <- as.character(x)
chartr("0123456789",
"\u2080\u2081\u2082\u2083\u2084\u2085\u2086\u2087\u2088\u2089",
x)
}
#Get covariates from data frame; for use in summary()
covs_df_to_matrix <- function(covs) {
if (NCOL(covs) == 0) {
return(as.matrix(covs))
}
fnames <- colnames(covs)
fnames[!startsWith(fnames, "`")] <- paste0("`", fnames[!startsWith(fnames, "`")], "`")
formula <- reformulate(fnames)
mf <- model.frame(terms(formula, data = covs), covs,
na.action = na.pass)
chars.in.mf <- vapply(mf, is.character, logical(1L))
mf[chars.in.mf] <- lapply(mf[chars.in.mf], factor)
X <- model.matrix(formula, data = mf,
contrasts.arg = lapply(Filter(is.factor, mf),
contrasts, contrasts = FALSE))
assign <- attr(X, "assign")[-1]
X <- X[,-1, drop=FALSE]
attr(X, "assign") <- assign
X
}
#Quickly compute diagonal of hat matrix without having to compute
#full projection matrix. Uses a special formula when a fixed effect (f)
#is present to simplify calculation. Assumes X first column is an
#intercept.
hat_fast <- function(X, w = NULL, f = NULL) {
if (is.null(f)) {
QR <- {
if (is.null(w)) qr.default(X)
else qr.default(sqrt(w) * X)
}
Q <- qr.qy(QR, diag(1, nrow = nrow(QR$qr), ncol = QR$rank))
return(rowSums(Q * Q))
}
#Fixed effects block version
fmm <- do.call("cbind", lapply(levels(f), function(i) as.numeric(f == i)))
if (!is.null(w)) {
rw <- sqrt(w)
diag_h_f <- hat_fast(fmm, w)
}
else {
rw <- 1
diag_h_f <- 1/tabulate(f)[as.integer(f)]
}
diag_h_X <- hat_fast(.lm.fit(rw*fmm, rw*X[,-1, drop = FALSE])$residuals/rw, w)
diag_h_f + diag_h_X
}
treat_name_from_coefs <- function(coef_names, treat_levels) {
shortest_name <- coef_names[which.min(nchar(coef_names))]
for (i in 1:nchar(shortest_name)) {
treat <- substring(shortest_name, 1, i)
if (sum(paste0(treat, treat_levels) %in% coef_names) == length(coef_names)) {
return(treat)
}
}
return("")
}
treat_levels_from_coefs <- function(coef_names, treat_levels, treat_name = NULL) {
if (is.null(treat_name)) {
treat_name <- treat_name_from_coefs(coef_names, treat_levels)
}
coef_levels <- sub(treat_name, "", coef_names, fixed = TRUE)
c(setdiff(treat_levels, coef_levels), coef_levels)
}
#Group mean centers a variable x for a factor f. For
#use with fixed effects.
demean <- function(x, f, w = NULL) {
f <- as.factor(f)
for (i in levels(f)) {
x[f == i] <- x[f == i] - mean_w(x, w, subset = f == i)
}
x
}
#Check whether function is being called within another specific function
called_from <- function(...) {
calls <- sys.calls()
any(unlist(list(...)) %in% unlist(lapply(calls, function(x) deparse1(x[[1]]))))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.