R/h_GenROT.R

Defines functions h_GenROT

Documented in h_GenROT

#' @title Rule-of-Thumb bandwidth selectors
#'
#' @description General Rule-of-Thumb bandwidth selector for univariate expectile regression
#' proposed by Adam and Gijbels (2021a) see Formula (24). The weight function \eqn{k_0(x)}
#' is chosen to be equal to the indicator function on \eqn{[min(X_i)+0.1,max(X_i)-0.1]}.
#'
#' @param X The covariate data values.
#' @param Y The response data values.
#' @param j The order of derivative to estimate. In default setting, \code{j=0}.
#' @param p The order of the local polynomial estimator. In default setting,
#' \code{p=1}.
#' @param kernel The kernel used to perform the estimation. In default setting,
#' \code{kernel=gaussK}. See details in \code{\link[locpol]{Kernels}}.
#' @param omega Numeric vector of level between 0 and 1 where 0.5 corresponds
#' to the mean.

#' @return \code{\link{h_GenROT}} provides the general Rule-of-Thumb bandwidth selector
#' for the expectile regression proposed by Adam and Gijbels (2021a).
#'
#' @import expectreg
#' @import locpol
#' @rdname h_GenROT
#'
#'
#'
#' @references{
#'
#' Adam, C. and Gijbels, I. (2021a). Local polynomial expectile regression.
#' Annals of the Institute of Statistical Mathematics doi:10.1007/s10463-021-00799-y.
#'
#' }
#'

#'
#' @import expectreg
#' @import locpol
#' @examples
#' library(locpol)
#' data(mcycle)
#' y=mcycle$accel
#' x=mcycle$times
#'
#' h=h_GenROT(X=x,Y=y,j=0,p=1,kernel=gaussK,omega=0.1)
#' #h=1.887636
#'
#' @name h_GenROT
#' @export

h_GenROT<-function(X,Y,j=0,p=1,kernel=gaussK,omega)
{
  k_1=min(X)+0.1
  k_2=max(X)-0.1
  C_p_nu=locpol::cteNuK(nu=j,p=p,kernel=kernel)
  fd<-compDerEst_exp(X=X, Y=Y, p=p, omega=omega)

  sum=0
  s_1=0
  s_2=0
  for(i in 1:length(Y))
  {
    s=0
    if(Y[i]<=fd$fit[i])
    {
      s=((1-omega)*(Y[i]-fd$fit[i]))^2
      s_1=s_1+1
    }else
    {
      s=((omega)*(Y[i]-fd$fit[i]))^2
      s_2=s_2+1
    }
    sum=sum+s
  }

  denominateur=((omega*s_2*(1/length(X)))+((1-omega)*s_1*(1/length(X))))^2
  numerateur=((k_2-k_1)*sum*(1/length(X)))/(denominateur)


  sum_2=0
  for(i in 1:length(X))
  {
    s_2=0
    if(k_1<= X[i] && X[i]<=k_2)
    {
      s_2=(fd$der[i])^2
    }else
    {
      s_2=0
    }
    sum_2=sum_2+s_2
  }

  Denominateur=sum_2*(1/length(X))
  h_optimal=C_p_nu*((numerateur/Denominateur)^(1/((2*p)+3)))*(length(X)^(-1/((2*p)+3)))
  return(h_optimal)
}
#' @return \code{\link{compDerEst_exp}} returns a data frame whose
#' components are:
#' \itemize{
#'  \item \code{X} The covariate data values.
#'  \item \code{Y} The response data values.
#'  \item \code{fit} The fitted values for the parametric estimation
#'  (leading to the Rule-of-Thumb expression).
#'  \item \code{der} The derivative estimation at \eqn{X} values.
#' }
#'
#'
#' @import expectreg
#' @import locpol
#' @rdname h_GenROT
#' @export
compDerEst_exp<-function (X, Y, p, omega)
{
  xnam <- paste("X^", 2:((p+1) + 3), sep = "")
  xnam <- paste("rb(", xnam, ",type='parametric')")
  fmla <- as.formula(paste(" Y~ 1 + rb(X,type='parametric') + ", paste(xnam, collapse = "+")))
  lmFit <- expectreg::expectreg.ls(fmla, data = data.frame(X,Y),estimate="laws"
                                   ,smooth ="schall",expectiles=omega)
  cp <- cumprod(1:(p + 4))
  coef <- coefficients(lmFit)
  der <- (c(coef[[p +1]])*c(cp[[p+1]]))+(c(coef[[p+2]])*c(cp[[p+2]])*X)+(c(coef[[p+3]])*c(cp[[p+3]])*(X^2/2))+(c(coef[[p+4]])*c(cp[[p+4]])*(X^3/6))
  res <- data.frame(X, Y, fit = fitted(lmFit), der)
  return(res)
}

Try the locpolExpectile package in your browser

Any scripts or data that you put into this service are public.

locpolExpectile documentation built on Aug. 3, 2021, 5:07 p.m.