logConDiscrMLE: Compute log-concave probability mass function from i.i.d....

Description Usage Arguments Details Value Author(s) References Examples

View source: R/logConDiscrMLE.r

Description

Compute the maximum likelihood estimate of a log-concave probability mass function from discrete i.i.d. data.

Usage

1
logConDiscrMLE(x, w = NA, psi_o = NA, prec = 1e-05, output = TRUE)

Arguments

x

Vector of observations. If w = NA, then weights will be generated for each non-unique observation of x.

w

If w = NA, weights will be generated from x. If w != NA, then it is assumed that x and w are of equal length and the elements in w correspond to the weights in x.

psi_o

Optional start vector.

prec

Precision for stopping criterion.

output

Logical, if TRUE, progress of the active set algorithm is shown.

Details

Given a vector of observations x_n = (x_1, …, x_n) from a discrete PMF, logConDiscrMLE computes a function \widehat p_k on \{x_1, …, x_n\} with knots only in {x_1, …, x_n} such that

L(\bold{p}) = ∑_{i=1}^n w_i \log(p_i)

is maximal over all log-concave PMFs \{p_k\}, k=1, …, n, where w_i is the frequency of the observation x_i. To accomplish this, an active set algorithm is used.

Value

A list containing the following elementes:

x

Vector of unique observations, sorted.

w

Generated weights.

psi

The estimated log-density on the grid of unique, sorted observations.

L

The value of the log-likelihood at the maximum.

IsKnot

Binary vector where isKnot_k = 1 if ψ has a knot at x_k.

xSupp

The full support \{x_1, x_1 + 1, …, x_m - 1, x_m\}.

psiSupp

ψ interpolated on xSupp.

Author(s)

Kaspar Rufibach (maintainer) kaspar.rufibach@gmail.com
http://www.kasparrufibach.ch
Fadoua Balabdaoui fadoua@ceremade.dauphine.fr
http://www.ceremade.dauphine.fr/~fadoua
Hanna Jankowski hkj@mathstat.yorku.ca
http://www.math.yorku.ca/~hkj
Kathrin Weyermann

References

Balabdaoui, F., Jankowski, H., Rufibach, K., and Pavlides, M. (2013). Maximum likelihood estimation and confidence bands for a discrete log-concave distribution. J. R. Stat. Soc. Ser. B Stat. Methodol., 75(4), 769–790.

Weyermann, K. (2007). An Active Set Algorithm for Log-Concave Discrete Distributions. MSc thesis, University of Bern (Supervisor: Lutz Duembgen).

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# -------------------------------------------------------------
# compute MLE for a random sample from a Poisson distribution
# -------------------------------------------------------------
x <- sort(rpois(n = 100, lambda = 2))
mle <- logConDiscrMLE(x)
psi <- mle$psi

# plot estimated PMF and log of estimate
par(mfrow = c(1, 2), las = 1)
true <- dpois(0:20, lambda = 2)
plot(mle$x, exp(psi), type = "p", col = 2, xlim = range(x), xlab = "x", 
    ylim = c(0, max(exp(psi), true)), ylab = "PMF", 
    main = "Estimate MLE from a Poisson", pch = 19)
legend("topright", c("truth", "MLE"), col = c(4, 2), lty = c(1, 0), 
    pch = c(0, 19), bty = "n")

# add true PMF
lines(0:20, true, type = "l", col = 4)

# log-density
plot(mle$x, psi, type = "p", col = 2, xlim = range(x), xlab = "x", 
    ylab = "PMF", main = "Estimate MLE from a Poisson", pch = 19)
lines(0:20, log(true), type = "l", col = 4)

# use a priori specified weights: mle = mle2
mle2 <- logConDiscrMLE(x = unique(x), w = table(x))


## -------------------------------------------------------------
## Illustrate the limit process: the code below can be used to
## to reproduce the limit process figure in Balabdaoui et al (2011)
## -------------------------------------------------------------
a <- 1
b <- 7
c <- 8
d <- 11
e <- 2
n <- 10 ^ 2

## support
x <- seq(a, d, by = 1)

## true density
dens <- dTriangular(a, b, c, d, e)
logdens <- log(dens)
rand <- rTriangular(n, a, b, c, d, e)$rand

## empirical
emp <- table(rand) / n
x.emp <- names(table(rand))

## log-concave MLE
mle <- logConDiscrMLE(rand, output = FALSE)

## plot log PMF and PMF
par(mfrow = c(1, 2))
plot(x, logdens, type = "l", col = 1, pch = 19, main = "log-density", 
    xlim = c(a, d), ylim = range(range(log(emp), logdens)))
lines(x, logdens, type = "l", col = 1, lwd = 0.1)
points(x.emp, log(emp), col = 4, pch = 19)
points(mle$x, mle$psi, col = 6, pch = 19)
abline(v = mle$x[mle$isKnot == 1], lty = 3, col = 3)

plot(x, dens, type = "l", col = 1, pch = 19, main = "density", 
    xlim = c(a, d), ylim = c(0, max(dens, emp)))
lines(x, dens, type = "l", col = 1, lwd = 0.1)
points(x.emp, emp, col = 4, pch = 19)
points(mle$x, exp(mle$psi), col = 6, pch = 19)
legend("topleft", c("truth", "MLE", "knots of the MLE", "empirical"), 
    col = c(1, 6, 3, 4), pch = c(NA, 19, NA, 19), lty = c(1, NA, 3, NA), 
    bg = "white", bty = "n")
abline(v = mle$x[mle$isKnot == 1], lty = 3, col = 3)


## -------------------------------------------------------------
## Now compute and plot Y(x) and H(x)
## -------------------------------------------------------------
xla <- paste("x = {r = ", a, ", ..., s - 1 = ", b - 1, "}", sep = "")
par(mfcol = c(2, 2), oma = rep(0, 4), mar = c(4.5, 4.5, 2, 1), las = 1)
plot(x, logdens, type = "b", col = 2, pch = 19, main = "log of 
    normalized triangular pmf", xlim = c(a, d), xaxt = "n", xlab = "x", 
    ylab = "log of normalized pmf")
axis(1, at = c(a, b, d), labels = paste(c("a = ", "b = ", "d = "), 
    c(a, b, d), sep = ""))

## compute H(x)
r <- a
s <- b
ind <- r:(s - 1)
px <- dens
p_rs <- px[ind]
m <- s - r

## -------------------------------------------------------------
## generate one observation from the distribution of U(F(x)) - U(F(x - 1))
## -------------------------------------------------------------
sigma <- diag(m) * 0
for (i in 1:m){
    for (j in 1:m){
        sigma[i, j] <- p_rs[i] * (i == j) - p_rs[i] * p_rs[j]
    }
}

set.seed(23041977)
cx <- rep(NA, d - a + 1)
cx[ind] <- rmvnorm(1, mean = rep(0, m), sigma = sigma, method = 
    c("eigen", "svd", "chol")[3])
Ux <- rep(NA, length(x))
Ux[ind] <- cx[ind]

X <- x[ind]
Y <- Ux[ind] / p_rs
W <- p_rs

## concave regression using 'cobs'
Res <- conreg(x = X, y = Y, w = W, verbose = TRUE)
g <- Res$yf
gKnots <- Res$iKnots
plot(X, Y, main = expression("The concave function g* that 
    minimizes "*Phi*"(g)"), xaxt = "n", ylab = "g*", ylim = 
    range(c(Y, g)), xlab = xla, type = "n")
axis(1, at = 0:100, labels = 0:100); abline(v = x[gKnots], 
    lty = 2, col = grey(0.75))
lines(X, g, lwd = 2, col = 3, type = "b", pch = 1)
lines(X, Y, lwd = 1, col = 2, type = "p", pch = 19)
legend("bottomright", c("values of cx / px", "minimizer g*"), 
    lty = c(NA, 1), pch = c(19, 1), col = 2:3, bty = "n", 
    lwd = c(NA, 2))

## compute H(x) for x = r, ..., s - 1 and plot it
gstar <- rep(NA, length(x))
gstar[ind] <- g
xs <- r:(s - 1)
Hs <- rep(0, length(xs))
for (i in 2:length(xs)){
    for (ks in r:(xs[i] - 1)){
        js <- r:ks
        Hs[i] <- Hs[i] + sum(gstar[js] * px[js])
    }
}

## check
(Hs[3:length(Hs)] - 2 * Hs[2:(length(Hs) - 1)] + Hs[1:(length(Hs) - 2)]) / p_rs[2:(length(Hs) - 1)]
gstar

## -------------------------------------------------------------
## plot the product of g* and px (the limit of the PMF)
## -------------------------------------------------------------
plot(x[ind], gstar[ind] * p_rs, main = expression("g"^"*"* " * p"), 
    xaxt = "n", pch = 19, col = 2, ylab = "g*", type = "b", xlab = xla)
axis(1, at = 0:100, labels = 0:100); abline(v = x[gKnots], lty = 2, 
    col = grey(0.75))

## compute Y(x) for x = r, ..., s - 1 and plot it
Ys <- rep(0, length(xs))
for (i in 2:length(xs)){
    for (ks in r:(xs[i] - 1)){
        js <- r:ks
        Ys[i] <- Ys[i] + sum(cx[js])
    }
}

## plot the two processes
plot(xs, Ys, type = "n", col = 2, xaxt = "n", lwd = 2, main = "The 
    processes H(x) and Y(x)", ylab = "H and Y", xlab = xla)
axis(1, at = 0:100, labels = 0:100); abline(v = x[gKnots], lty = 2, 
    col = grey(0.75))
lines(xs, Hs, col = 2, lwd = 1, type = "b")
lines(xs, Ys, col = 3, lwd = 2, type = "l", lty = 2)
legend("topleft", c("H(x)", "Y(x)"), col = 2:3, lty = c(1, 2), pch = 1, 
    bty = "n", lwd = c(1, 2))

logcondiscr documentation built on May 2, 2019, 3:35 p.m.