Nothing
.tmp.f <- function(){
library(testthat)
}
# .setUp <- function() {
# #library(MASS)
# .setUpDf <- within( list(),{
# x <- seq(0,1,length.out = 41)[-c(1,41)];
# #x[1] = x[1] + .Machine$double.eps;
# #x[length(x)] <- x[length(x)]- .Machine$double.eps
# lx <- logit(x)
# })
# attach(.setUpDf)
# }
#
# .tearDown <- function() {
# #detach(.setUpDf)
# detach()
# }
local_x_l <- function(env = parent.frame()) {
env$x <- x <- seq(0,1,length.out = 41)[-c(1,41)];
env$lx <- lx <- logit(x)
}
.tmp.f <- function(){
local_x_l()
print(x) # replaced x
}
.tmp.f()
test_that("inverseSame", {
local_x_l()
x
xnorm <- logit(x)
xinv <- invlogit(xnorm)
expect_equal(x, xinv)
})
test_that("plogitnorm", {
local_x_l()
px <- plogitnorm(x) #percentiles
expect_equal( pnorm(lx), px)
px2 <- plogitnorm(x,mu = 2,sigma = 1)
expect_equal( pnorm(lx,mean = 2,sd = 1), px2)
#plot( px ~ x)
#plot( px ~ logit(x))
#lines( pnorm( logit(x)) ~ logit(x) )
})
test_that("dlogitnorm", {
local_x_l()
q <- c(-1,0,0.5,1,2)
set.seed(0815)
ans <- suppressWarnings(dlogitnorm(q))
expect_equal(c(0,0,1.595769,0,0), ans, tolerance = 1e-7)
})
test_that("twCoefLogitnorm", {
local_x_l()
theta <- twCoefLogitnorm(0.7,0.9,perc = 0.999)
px <- plogitnorm(x,mu = theta[1],sigma = theta[2]) #percentiles function
dx <- dlogitnorm(x,mu = theta[1],sigma = theta[2]) #density function
#plot(px~x); abline(v = c(0.7,0.9)); abline(h = c(0.5,0.975))
#plot(dx~x); abline(v = c(0.7,0.9))
# upper percentile at 0.9
expect_equal(which.min(abs(px - 0.999)), which(x == 0.9) )
expect_equal(which.min(abs(px - 0.5)), which.min(abs(x - 0.7)) )
# mode at 0.7
#expect_equal(which(abs(x-0.7)<.Machine$double.eps), which.max(dx) )
})
test_that("twCoefLogitnormN", {
local_x_l()
quant = c(0.7,0.8,0.9)
perc = c(0.5,0.75,0.975)
(theta <- twCoefLogitnormN( quant = quant, perc = perc ))
# regression to previous results
expect_equal(theta, c(mu=0.86, sigma = 0.76), tolerance = 0.01)
#px <- plogitnorm(x,mu = theta[1],sigma = theta[2]) #percentiles function
#dx <- dlogitnorm(x,mu = theta[1],sigma = theta[2]) #density function
#plot(px~x); abline(v = quant,col = "gray"); abline(h = perc,col = "gray")
})
test_that("twCoefLogitnormMLE", {
local_x_l()
theta <- twCoefLogitnormMLE(0.7,0.9,perc = 0.975)
px <- plogitnorm(x,mu = theta[1],sigma = theta[2]) #percentiles function
dx <- dlogitnorm(x,mu = theta[1],sigma = theta[2]) #density function
#plot(px~x); abline(v = c(0.7,0.9)); abline(h = c(0.5,0.975))
#plot(dx~x); abline(v = c(0.7,0.9))
# upper percentile at 0.9
expect_equal(which.min(abs(px - 0.975)), which(x == 0.9) )
# mode at 0.7
expect_equal(which.min(abs(x - 0.7)), which.max(dx) )
})
test_that("twCoefLogitnormE", {
local_x_l()
set.seed(0815)
theta <- twCoefLogitnormE(0.7,0.9)
px <- plogitnorm(x,mu = theta[1],sigma = theta[2]) #percentiles function
dx <- dlogitnorm(x,mu = theta[1],sigma = theta[2]) #density function
#plot(px~x); abline(v = c(0.7,0.9)); abline(h = c(0.5,0.975))
#plot(dx~x); abline(v = c(0.7,0.9))
# upper percentile at 0.9
expect_equal(which.min(abs(px - 0.975)), which(x == 0.9) )
# mean at 0.7
expect_equal( unname(momentsLogitnorm(
mu = theta[1],sigma = theta[2])["mean"]), 0.7, tolerance = 1e-3)
z <- rlogitnorm(1e5, mu = theta[1],sigma = theta[2])
expect_equal(unname(mean(z)), 0.7, tolerance = 5e-3 )
})
.tmp.f <- function(){
local_x_l()
px <- plogitnorm(x) #percentiles
plot( px ~ x )
plot( qlogitnorm(px) ~ x ) #one to one line
plot( dlogitnorm(x,mu = 0.9) ~ x, type = "l" )
abline( v = qlogitnorm(c(0.025,0.5,0.975), mu = 0.9))
}
.tmp.f <- function(){
#library(MASS)
#?fitdistr #not implemented
quant = c(0.6,0.9)
perc = c(0.5,0.975)
theta0 = c(mu = 0,sigma = 1)
method = "BFGS"
#mtrace(ofLogitnorm)
#popt <- as.list(tmp$par)
popt <- as.list(coefLogitnorm(quant))
popt2 <- as.list(coefLogitnorm(quant, perc = c(0.5,0.9995)))
ofLogitnorm(popt,quant,perc)
plot( dlogitnorm(x,mu = popt$mu,sigma = popt$sigma) ~ x, type = "l" )
abline( v = qlogitnorm(c(0.025,0.5,0.975),mu = popt$mu,sigma = popt$sigma))
lines( dlogitnorm(
x,mu = popt2$mu,sigma = popt2$sigma) ~ x, type = "l", col = "maroon" )
abline( v = qlogitnorm(
c(0.5,0.9995),mu = popt2$mu,sigma = popt2$sigma), col = "maroon")
popt <- as.list(coefLogitnorm(c(0.9, 0.9995), perc = c(0.5,0.9995)))
plot( dlogitnorm(x,mu = popt$mu,sigma = popt$sigma) ~ x, type = "l" )
abline( v = qlogitnorm(c(0.025,0.5,0.975),mu = popt$mu,sigma = popt$sigma))
}
.tmp.f <- function(){
#visualize the objective functions surface
quant = c(0.6,0.9)
perc = c(0.5,0.975)
perc = c(0.5,0.9995)
perc = c(0.5,upperBoundProb)
quant = parms.var[varDist == "logitnorm",c("qMedian","qUpper")]
quant = parms.var["epsF",c("qMedian","qUpper")]
quant = parms.var["epsG",c("qMedian","qUpper")]
quant = parms.var["epsP",c("qMedian","qUpper")]
tmp.n <- 80
tmp.mu <- seq(0,1,length.out = tmp.n)
tmp.sigma <- seq(0.01,2.5,length.out = tmp.n)
tmp <- as.matrix(expand.grid( mu = tmp.mu, sigma = tmp.sigma))
tmp.of <- apply(tmp,1,ofLogitnorm, quant = quant,perc = perc )
tmp.ofm <- matrix(tmp.of, nrow = tmp.n )
image(tmp.mu, tmp.sigma, tmp.ofm)
image(tmp.mu, tmp.sigma, exp(-0.5*tmp.ofm)) #very flat
#distort by decreasing Temp *1/T
image(tmp.mu, tmp.sigma, exp(-0.5*1/(1/800)*tmp.ofm))
tmp.o <- coefLogitnorm(quant = quant, perc = perc, returnDetails = TRUE)
tmp.o
popt <- as.list(tmp.o$par)
points( popt$mu, popt$sigma)
windows()
unlist(popt)
plot( dlogitnorm(x,mu = popt$mu,sigma = popt$sigma) ~ x, type = "l" )
abline( v = qlogitnorm(perc,mu = popt$mu,sigma = popt$sigma))
lines( dlogitnorm(x,mu = popt$mu,sigma = 1) ~ x, type = "l", col = "maroon" )
abline( v = qlogitnorm(
c(0.025,0.5,0.975),mu = popt$mu,sigma = 1), col = "maroon")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.