Description Usage Arguments Details Value Author(s) References Examples
fmodelseq
evaluates the (unnormalized) posterior density of the latent trait of a sequential item response model with a given prior distribution, and computes the probability for each item and response category given the latent trait.
1 |
zeta |
Latent trait value. |
y |
Vector of length m for a single response pattern, or matrix of size s by m of a set of s item response patterns. In the latter case the posterior is computed by conditioning on the event that the response pattern is one of the s response patterns. Elements of |
bpar |
Matrix of size m by r-1 of step "difficulty" parameters. |
prior |
Function that evaluates the prior distribution of the latent trait. The default is the standard normal distribution. |
... |
Additional arguments to be passed to |
The parameterization of the sequential model is such that
P(Y_{ij} > y|Y_{ij} ≥ y,ζ_i) = 1/(1 + \exp(-(ζ_i-β_{j,y+1})))
for y = 0, 1, …, r-2. This model is dicussed by Tutz (1990, 1997) and Verhelst, Glas, and de Vries (1997).
post |
The log of the unnormalized posterior distribution evaluated at |
prob |
Matrix of size m by 2 array of item response probabilities. |
Timothy R. Johnson
Tutz, G. (1990). Sequential item response models with an ordered response. British Journal of Mathematical and Statistical Psychology, 43, 39-55.
Tutz, G. (1997). Sequential models for ordered responses. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of item response theory (pp. 139-152). New York: Springer-Verlag.
Verhelst, N. D., Glas, C. A. W., \& de Vries, H. H. (1997). A steps model to analyze partial credit. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of item response theory (pp. 123-138). New York: Springer-Verlag.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | samp <- 5000 # samples from posterior distribution
burn <- 1000 # burn-in samples to discard
beta <- matrix(0, 5, 2)
post <- postsamp(fmodelseq, c(0,1,2,1,0), bpar = beta,
control = list(nbatch = samp + burn))
post <- data.frame(sample = 1:samp,
zeta = post$batch[(burn + 1):(samp + burn)])
with(post, plot(sample, zeta), type = "l") # trace plot of sampled realizations
with(post, plot(density(zeta, adjust = 2))) # density estimate of posterior distribution
with(posttrace(fmodelseq, c(0,1,2,1,0), bpar = beta),
plot(zeta, post, type = "l")) # profile of log-posterior density
information(fmodelseq, c(0,1,2,1,0), bpar = beta) # Fisher information
with(post, mean(zeta)) # posterior mean
postmode(fmodelseq, c(0,1,2,1,0), bpar = beta) # posterior mode
with(post, quantile(zeta, probs = c(0.025, 0.975))) # posterior credibility interval
profileci(fmodelseq, c(0,1,2,1,0), bpar = beta) # profile likelihood confidence interval
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.