Nothing
#' @title Bootstrap Estimates for `lm`
#' Outputs
#'
#' @description Generate bootstrap
#' estimates for models in a list of
#' 'lm' outputs.
#'
#' @details This function is for
#' advanced users. [do_boot()] is a
#' function users should try first
#' because [do_boot()] has a general
#' interface for input-specific
#' functions like this one.
#'
#' It does nonparametric bootstrapping
#' to generate bootstrap estimates of
#' the regression coefficients in the
#' regression models of a list of [lm()]
#' outputs, or an `lm_list`-class object
#' created by [lm2list()]. The stored
#' estimates can be used by
#' [indirect_effect()],
#' [cond_indirect_effects()], and
#' related functions in forming
#' bootstrapping confidence intervals
#' for effects such as indirect effect
#' and conditional indirect effects.
#'
#' This approach removes the need to
#' repeat bootstrapping in each call to
#' [indirect_effect()],
#' [cond_indirect_effects()], and
#' related functions. It also ensures
#' that the same set of bootstrap
#' samples is used in all subsequent
#' analyses.
#'
#' @return A `boot_out`-class object
#' that can be used for the `boot_out`
#' argument of [indirect_effect()],
#' [cond_indirect_effects()], and
#' related functions for forming
#' bootstrapping confidence intervals.
#' The object is a list with the number
#' of elements equal to the number of
#' bootstrap samples. Each element is a
#' list of the parameter estimates and
#' sample variances and covariances of
#' the variables in each bootstrap
#' sample.
#'
#' @param outputs A list of `lm` class
#' objects, or the output of [lm2list()]
#' (i.e., an `lm_list`-class object).
#'
#' @param R The number of bootstrap
#' samples. Default is 100.
#'
#' @param seed The seed for the
#' bootstrapping. Default is `NULL` and
#' seed is not set.
#'
#' @param progress Whether progress will
#' be displayed. Default is `TRUE`.
#'
#'
#' @seealso [do_boot()], the general
#' purpose function that users should
#' try first before using this function.
#'
#' @examples
#'
#' data(data_med_mod_ab1)
#' dat <- data_med_mod_ab1
#' lm_m <- lm(m ~ x*w + c1 + c2, dat)
#' lm_y <- lm(y ~ m*w + x + c1 + c2, dat)
#' lm_out <- lm2list(lm_m, lm_y)
#' # In real research, R should be 2000 or even 5000
#' # In real research, no need to set progress to FALSE
#' # Progress is displayed by default.
#' lm_boot_out <- lm2boot_out(lm_out, R = 100, seed = 1234,
#' progress = FALSE)
#' out <- cond_indirect_effects(wlevels = "w",
#' x = "x",
#' y = "y",
#' m = "m",
#' fit = lm_out,
#' boot_ci = TRUE,
#' boot_out = lm_boot_out)
#' out
#'
#' @describeIn lm2boot_out Generate
#' bootstrap estimates using one process
#' (serial, without parallelization).
#'
#' @order 1
#'
#' @export
#'
#'
lm2boot_out <- function(outputs, R = 100, seed = NULL,
progress = TRUE) {
out_type <- cond_indirect_check_fit(outputs)
if (out_type != "lm") {
stop("'outputs' must be a list of 'lm()' outputs.")
}
dat <- merge_model_frame(outputs)
n <- nrow(dat)
if (!is.null(seed)) set.seed(seed)
if (progress) {
out0 <- pbapply::pbreplicate(R, lm_boot2est_i(d = dat,
i = sample.int(n, replace = TRUE),
outputs = outputs), simplify = FALSE)
} else {
out0 <- replicate(R, lm_boot2est_i(d = dat,
i = sample.int(n, replace = TRUE),
outputs = outputs), simplify = FALSE)
}
class(out0) <- "boot_out"
out0
}
# Generate the function for bootstrapping.
# Return a parameter estimates tables.
#' @noRd
lm_boot2est_i <- function(d, i = NULL, outputs) {
if (!is.null(i)) {
d_i <- d[i, ]
} else {
d_i <- d
}
out_i <- lapply(outputs, stats::update, data = d_i)
lm2ptable(out_i)
}
#' @param R The number of bootstrap
#' samples. Default is 100.
#'
#' @param seed The seed for the random
#' resampling. Default is `NULL`.
#'
#' @param parallel Logical. Whether
#' parallel processing will be used.
#' Default is `NULL`.
#'
#' @param ncores Integer. The number of
#' CPU cores to use when `parallel` is
#' `TRUE`. Default is the number of
#' non-logical cores minus one (one
#' minimum). Will raise an error if
#' greater than the number of cores
#' detected by
#' [parallel::detectCores()]. If
#' `ncores` is set, it will override
#' `make_cluster_args`.
#'
#' @param make_cluster_args A named list
#' of additional arguments to be passed
#' to [parallel::makeCluster()]. For
#' advanced users. See
#' [parallel::makeCluster()] for
#' details. Default is `list()`.
#'
#' @param progress Logical. Display
#' progress or not. Default is `TRUE`.
#'
#' @describeIn lm2boot_out Generate
#' bootstrap estimates using parallel
#' processing.
#'
#' @order 2
#'
#' @export
lm2boot_out_parallel <- function(outputs,
R = 100,
seed = NULL,
parallel = FALSE,
ncores = max(parallel::detectCores(logical = FALSE) - 1, 1),
make_cluster_args = list(),
progress = TRUE) {
out_type <- cond_indirect_check_fit(outputs)
if (out_type != "lm") {
stop("'outputs' must be a list of 'lm()' outputs.")
}
dat_org <- merge_model_frame(outputs)
n <- nrow(dat_org)
ft <- system.time(lapply(outputs, stats::update, data = dat_org))[3]
if (isTRUE(ft == 0)) ft <- .00001
requireNamespace("parallel", quietly = TRUE)
if (!is.null(seed)) set.seed(seed)
ids <- replicate(R, sample.int(n, replace = TRUE), simplify = FALSE)
if (parallel) {
if (is.numeric(ncores)) {
ncores0 <- parallel::detectCores()
if (ncores == ncores0) {
warning(paste0("'ncores' >= The number of detected cores (",
ncores0,"). The computer may not be responsive",
" when bootstrapping is running."),
immediate. = TRUE)
utils::flush.console()
}
if (ncores > ncores0) {
ncores <- max(ncores0 - 1, 1L)
}
} else {
ncores <- 1L
}
} else {
ncores <- 1L
}
if (ncores > 1L) {
make_cluster_args <- utils::modifyList(make_cluster_args,
list(spec = ncores))
tmp <- tryCatch({cl <- do.call(parallel::makeCluster,
make_cluster_args)},
error = function(e) e)
has_cl <- !inherits(tmp, "error")
} else {
has_cl <- FALSE
}
if (has_cl) {
texp <- 1.2 * R * ft[[1]] / length(cl)
message(paste0(length(cl), " processes started to run bootstrapping."))
# message(paste0("The expected CPU time is about ",
# round(texp, 2),
# " second(s)."))
utils::flush.console()
pkgs <- .packages()
pkgs <- rev(pkgs)
parallel::clusterExport(cl, "pkgs", envir = environment())
parallel::clusterEvalQ(cl, {
sapply(pkgs,
function(x) library(x, character.only = TRUE))
})
# No need. ids pregenerated.
# parallel::clusterSetRNGStream(cl, seed)
if (progress) {
op_old <- pbapply::pboptions(type = "timer")
tmp <- tryCatch({rt <- system.time(out <- suppressWarnings(
pbapply::pblapply(ids,
lm_boot2est_i,
d = dat_org,
outputs = outputs,
cl = cl)))},
error = function(e) e)
pbapply::pboptions(op_old)
} else {
tmp <- tryCatch({rt <- system.time(out <- suppressWarnings(
parallel::parLapplyLB(cl,
ids,
lm_boot2est_i,
d = dat_org,
outputs = outputs)))},
error = function(e) e)
}
if (inherits(tmp, "error")) {
try(parallel::stopCluster(cl), silent = TRUE)
stop("Running in parallel failed. Please set 'parallel' to FALSE.")
}
parallel::stopCluster(cl)
} else {
if (progress) {
rt <- system.time(out <- suppressWarnings(pbapply::pblapply(ids,
lm_boot2est_i,
d = dat_org,
outputs = outputs)))
} else {
rt <- system.time(out <- suppressWarnings(lapply(ids,
lm_boot2est_i,
d = dat_org,
outputs = outputs)))
}
}
class(out) <- "boot_out"
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.