compute_posterior_matrices | R Documentation |
Compute posterior matrices.
compute_posterior_matrices(
data,
Ulist,
posterior_weights,
algorithm.version = c("Rcpp", "R"),
A = NULL,
output_posterior_cov = FALSE,
mc.cores = 1,
posterior_samples = 0,
seed = 123
)
data |
A |
Ulist |
List containing the prior covariance matrices. |
posterior_weights |
Vector containing the posterior probability of each mixture component in Ulist for the data. |
algorithm.version |
Indicates whether to use R or Rcpp version. |
A |
the linear transformation matrix, Q x R matrix. This is used to compute the posterior for Ab. |
output_posterior_cov |
whether or not to output posterior covariance matrices for all effects. |
mc.cores |
The argument supplied to
|
posterior_samples |
the number of samples to be drawn from the posterior distribution of each effect. |
seed |
a random number seed to use when sampling from the
posteriors. It is used when |
The return value is a list containing the following components:
PosteriorMean |
J x Q matrix of posterior means. |
PosteriorSD |
J x Q matrix of posterior (marginal) standard deviations. |
NegativeProb |
J x Q matrix of posterior (marginal) probability of being negative. |
ZeroProb |
J x Q matrix of posterior (marginal) probability of being zero. |
lfsr |
J x Q matrix of local false sign rate estimates. |
lfdr |
J x Q matrix of local false discovery rate estimates. |
PosteriorCov |
Q x Q x J array of posterior covariance
matrices, if the |
PosteriorSamples |
M x Q x J array of samples, if the
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.