View source: R/env_stratification.R
env_stratification | R Documentation |
Computes environment stratification based on factor analysis.
env_stratification( .data, env, gen, resp, use = "complete.obs", mineval = 1, verbose = TRUE )
.data |
The dataset containing the columns related to Environments, Genotypes, replication/block and response variable(s) |
env |
The name of the column that contains the levels of the environments. |
gen |
The name of the column that contains the levels of the genotypes. |
resp |
The response variable(s). To analyze multiple variables in a
single procedure use, for example, |
use |
The method for computing covariances in the presence of missing
values. Defaults to |
mineval |
The minimum value so that an eigenvector is retained in the factor analysis. |
verbose |
Logical argument. If |
An object of class env_stratification
which is a list with one
element per analyzed trait. For each trait, the following values are given.
data
The genotype-environment means.
cormat
: The correlation matrix among the environments.
PCA
: The eigenvalues and explained variance.
FA
: The factor analysis.
env_strat
: The environmental stratification.
mega_env_code
: The environments within each mega-environment.
mega_env_stat
: The statistics for each mega-environment.
KMO
: The result for the Kaiser-Meyer-Olkin test.
MSA
: The measure of sampling adequacy for individual variable.
communalities_mean
: The communalities' mean.
initial_loadings
: The initial loadings.
Tiago Olivoto, tiagoolivoto@gmail.com
Murakami, D.M.D., and C.D.C. Cruz. 2004. Proposal of methodologies for environment stratification and analysis of genotype adaptability. Crop Breed. Appl. Biotechnol. 4:7-11.
env_dissimilarity()
library(metan) model <- env_stratification(data_ge, env = ENV, gen = GEN, resp = everything()) gmd(model)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.