View source: R/datalist2mids.R
datlist2mids | R Documentation |
mids
Object
This function converts a list of multiply imputed data sets
to a mice::mids
object.
datlist2mids(dat.list, progress=FALSE)
datalist2mids(dat.list, progress=FALSE)
dat.list |
List of multiply imputed data sets or an object of class
|
progress |
An optional logical indicating whether conversion process be displayed |
An object of class mids
See mice::as.mids
for converting
a multiply imputed dataset in long format into a mids
object.
## Not run:
#############################################################################
# EXAMPLE 1: Imputation of NHANES data using Amelia package
#############################################################################
library(mice)
library(Amelia)
data(nhanes,package="mice")
set.seed(566) # fix random seed
# impute 10 datasets using Amelia
a.out <- Amelia::amelia(x=nhanes, m=10)
# plot of observed and imputed data
plot(a.out)
# convert list of multiply imputed datasets into a mids object
a.mids <- miceadds::datlist2mids( a.out$imputations )
# linear regression: apply mice functionality lm.mids
mod <- with( a.mids, stats::lm( bmi ~ age ) )
summary( mice::pool( mod ) )
## est se t df Pr(>|t|) lo 95
## (Intercept) 30.624652 2.626886 11.658158 8.406608 1.767631e-06 24.617664
## age -2.280607 1.323355 -1.723352 8.917910 1.192288e-01 -5.278451
## hi 95 nmis fmi lambda
## (Intercept) 36.6316392 NA 0.5791956 0.4897257
## age 0.7172368 0 0.5549945 0.4652567
# fit linear regression model in Zelig
library(Zelig)
mod2 <- Zelig::zelig( bmi ~ age, model="ls", data=a.out, cite=FALSE)
summary(mod2)
## Model: Combined Imputations
## Estimate Std.Error z value Pr(>|z|)
## (Intercept) 30.625 2.627 11.658 0.00000 ***
## age -2.281 1.323 -1.723 0.08482
## ---
## Signif. codes: '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# fit linear regression using mitools package
library(mitools)
datimp <- mitools::imputationList(a.out$imputations)
mod3 <- with( datimp, stats::lm( bmi ~ age ) )
summary( mitools::MIcombine( mod3 ) )
## Multiple imputation results:
## with(datimp, stats::lm(bmi ~ age))
## MIcombine.default(mod3)
## results se (lower upper) missInfo
## (Intercept) 30.624652 2.626886 25.304594 35.9447092 51
## age -2.280607 1.323355 -4.952051 0.3908368 49
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.