| lmer_vcov | R Documentation | 
The function lmer_vcov conducts statistical inference for
fixed coefficients and standard deviations
and correlations of random effects structure of models fitted in the
lme4 package.
The function lmer_pool applies the Rubin formula for inference
for fitted lme4 models for multiply imputed datasets.
lmer_vcov(object, level=.95, use_reml=FALSE, ...)
## S3 method for class 'lmer_vcov'
summary(object, digits=4, file=NULL, ...)
## S3 method for class 'lmer_vcov'
coef(object, ...)
## S3 method for class 'lmer_vcov'
vcov(object, ...)
lmer_vcov2(object, level=.95, ...)
lmer_pool( models, level=.95, ...)
## S3 method for class 'lmer_pool'
summary(object, digits=4, file=NULL, ...)
lmer_pool2( models, level=.95, ...)
| object | Fitted object in lme4 | 
| level | Confidence level | 
| use_reml | Logical indicating whether REML estimates should be used for variance components (if provided) | 
| digits | Number of digits used for rounding in summary | 
| file | Optional file name for sinking output | 
| models | List of models fitted in lme4 for a multiply imputed dataset | 
| ... | Further arguments to be passed | 
List with several entries:
| par_summary | Parameter summary | 
| coef | Estimated parameters | 
| vcov | Covariance matrix of estimates | 
| ... | Further values | 
Function originally from Ben Bolker, http://rpubs.com/bbolker/varwald
lme4::lmer,
mitml::testEstimates
## Not run: 
#############################################################################
# EXAMPLE 1: Single model fitted in lme4
#############################################################################
library(lme4)
data(data.ma01, package="miceadds")
dat <- na.omit(data.ma01)
#* fit multilevel model
formula <- math ~ hisei + miceadds::gm( books, idschool ) + ( 1 + books | idschool )
mod1 <- lme4::lmer( formula, data=dat, REML=FALSE)
summary(mod1)
#* statistical inference
res1 <- miceadds::lmer_vcov( mod1 )
summary(res1)
coef(res1)
vcov(res1)
#############################################################################
# EXAMPLE 2: lme4 model for multiply imputed dataset
#############################################################################
library(lme4)
data(data.ma02, package="miceadds")
datlist <- miceadds::datlist_create(data.ma02)
#** fit lme4 model for all imputed datasets
formula <- math ~ hisei + miceadds::gm( books, idschool ) + ( 1 | idschool )
models <- list()
M <- length(datlist)
for (mm in 1:M){
    models[[mm]] <- lme4::lmer( formula, data=datlist[[mm]], REML=FALSE)
}
#** statistical inference
res1 <- miceadds::lmer_pool(models)
summary(res1)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.