Groupwise Imputation Function

Description

This function performs groupwise imputation for arbitrary imputation methods defined in mice.

Usage

1
mice.impute.bygroup(y, ry, x, group, imputationFunction, ...)

Arguments

y

Incomplete data vector of length n

ry

Vector of missing data pattern (FALSE – missing, TRUE – observed)

x

Matrix (n x p) of complete covariates.

group

Name of grouping variable

imputationFunction

Imputation method for mice

...

More arguments to be passed to imputation function

Value

Vector of imputed values

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
## Not run: 
#############################################################################
# EXAMPLE 1: Cluster-specific imputation for some variables
#############################################################################	
	
data( data.ma01 )
dat <- data.ma01
# use sub-dataset
dat <- dat[ dat$idschool <= 1006 , ]
V <- ncol(dat)
# create initial predictor matrix and imputation methods
predictorMatrix <- matrix( 1 , nrow=V , ncol=V)
diag(predictorMatrix) <- 0
rownames(predictorMatrix) <- colnames(predictorMatrix) <- colnames(dat)
predictorMatrix[ , c("idstud", "studwgt","urban" ) ] <- 0
imputationMethod <- rep("norm" , V)
names(imputationMethod) <- colnames(dat)

#** groupwise imputation of variable books 
imputationMethod["books"] <- "bygroup"
# specify name of the grouping variable ('idschool') and imputation method ('norm') 
group <- list( "books" = "idschool" )
imputationFunction <- list("books" = "norm" )

#** conduct multiple imputation in mice
imp <- mice::mice( dat , imputationMethod = imputationMethod , predictorMatrix = predictorMatrix ,
            m=1 , maxit=1 , group = group , imputationFunction = imputationFunction )

## End(Not run)

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.