mi.anova | R Documentation |
D_2
Statistic)
This function combines F
values from analysis of variance using
the D_2
statistic which is based on combining \chi^2
statistics
(see Allison, 2001, Grund, Luedtke & Robitzsch, 2016;
micombine.F
, micombine.chisquare
).
mi.anova(mi.res, formula, type=2)
mi.res |
Object of class |
formula |
Formula for |
type |
Type for ANOVA calculations. For |
A list with the following entries:
r.squared |
Explained variance |
anova.table |
ANOVA table |
Allison, P. D. (2002). Missing data. Newbury Park, CA: Sage.
Grund, S., Luedtke, O., & Robitzsch, A. (2016). Pooling ANOVA results from multiply imputed datasets: A simulation study. Methodology, 12(3), 75-88. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1027/1614-2241/a000111")}
This function uses micombine.F
and
micombine.chisquare
.
See mice::pool.compare
and
mitml::testModels
for model
comparisons based on the D_1
statistic. The D_2
statistic
is also included in mitml::testConstraints
.
The D_1
, D_2
and D_3
statistics are also included in the
mice package in functions mice::D1
,
mice::D2
and mice::D3
.
## Not run:
#############################################################################
# EXAMPLE 1: nhanes2 data | two-way ANOVA
#############################################################################
library(mice)
library(car)
data(nhanes2, package="mice")
set.seed(9090)
# nhanes data in one chain and 8 imputed datasets
mi.res <- miceadds::mice.1chain( nhanes2, burnin=4, iter=20, Nimp=8 )
# 2-way analysis of variance (type 2)
an2a <- miceadds::mi.anova(mi.res=mi.res, formula="bmi ~ age * chl" )
# test of interaction effects using mitml::testModels()
mod1 <- with( mi.res, stats::lm( bmi ~ age*chl ) )
mod0 <- with( mi.res, stats::lm( bmi ~ age+chl ) )
mitml::testModels(model=mod1$analyses, null.model=mod0$analyses, method="D1")
mitml::testModels(model=mod1$analyses, null.model=mod0$analyses, method="D2")
# 2-way analysis of variance (type 3)
an2b <- miceadds::mi.anova(mi.res=mi.res, formula="bmi ~ age * chl", type=3)
#****** analysis based on first imputed dataset
# extract first dataset
dat1 <- mice::complete( mi.res$mids )
# type 2 ANOVA
lm1 <- stats::lm( bmi ~ age * chl, data=dat1 )
summary( stats::aov( lm1 ) )
# type 3 ANOVA
lm2 <- stats::lm( bmi ~ age * chl, data=dat1, contrasts=list(age=contr.sum))
car::Anova(mod=lm2, type=3)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.