| TNorm | R Documentation |
Random generation for the truncated normal distribution.
The mean and standard deviation of the original normal distribution
are mean and sd. Truncation limits are given by
a, b, type of truncation is given by trunc.
rTNorm(n, mean=0, sd=1, a, b, trunc)
mean |
mean (if common for all observations) or a vector of
length |
sd |
standard deviation (if common for all observations) or a vector of
length Note that |
a |
truncation limit 1 (if common for all observations) or a
vector of length |
b |
truncation limit 2 (if common for all observations) or a
vector of length |
trunc |
type of truncation (if common for all observations) or a
vector of length
If |
n |
number of observations to be sampled. |
A numeric vector with sampled values.
Arnošt Komárek arnost.komarek@mff.cuni.cz
Geweke, J. (1991). Efficient simulation from the multivariate normal and Student-t distributions subject to linear constraints and the evaluation of constraint probabilities. Computer Sciences and Statistics, 23, 571–578.
rnorm, rTMVN.
set.seed(1977)
### Not truncated normal distribution
x1 <- rTNorm(1000, mean=10, sd=3)
c(mean(x1), sd(x1), range(x1))
### Truncation from left only
x2 <- rTNorm(1000, mean=10, sd=3, a=7, trunc=0)
c(mean(x2), sd(x2), range(x2))
### Degenerated normal distribution
x6 <- rTNorm(1000, mean=10, sd=3, a=13, trunc=1)
c(mean(x6), sd(x6), range(x6))
### Truncation from right only
x3 <- rTNorm(1000, mean=10, sd=3, a=13, trunc=2)
c(mean(x3), sd(x3), range(x3))
### Truncation from both sides
x4 <- rTNorm(1000, mean=10, sd=3, a=7, b=13, trunc=3)
c(mean(x4), sd(x4), range(x4))
x5 <- rTNorm(1000, mean=10, sd=3, a=5.5, b=14.5, trunc=3)
c(mean(x5), sd(x5), range(x5))
oldPar <- par(mfrow=c(2, 3))
hist(x1, main="N(10, 3^2)")
hist(x2, main="TN(10, 3^2, 7, Infty)")
hist(x6, main="TN(10, 3^2, 13, 13)")
hist(x3, main="TN(10, 3^2, -Infty, 13)")
hist(x4, main="TN(10, 3^2, 7, 13)")
hist(x5, main="TN(10, 3^2, 5.5, 14.5)")
par(oldPar)
### Different truncation limits
n <- 1000
a <- rnorm(n, -2, 1)
b <- a + rgamma(n, 1, 1)
trunc <- rep(c(0, 1, 2, 3, 4), each=n/5)
x7 <- rTNorm(n, mean=1, sd=2, a=a, b=b, trunc=trunc)
cbind(trunc, a, x7)[1:10,]
sum(x7[1:(n/5)] > a[1:(n/5)]) ## must be equal to n/5
cbind(trunc, a, x7)[201:210,]
sum(x7[(n/5+1):(2*n/5)] == a[(n/5+1):(2*n/5)]) ## must be equal to n/5
cbind(trunc, x7, a)[401:410,]
sum(x7[(2*n/5+1):(3*n/5)] < a[(2*n/5+1):(3*n/5)]) ## must be equal to n/5
cbind(trunc, a, x7, b)[601:610,]
sum(x7[(3*n/5+1):(4*n/5)] > a[(3*n/5+1):(4*n/5)]) ## must be equal to n/5
sum(x7[(3*n/5+1):(4*n/5)] < b[(3*n/5+1):(4*n/5)]) ## must be equal to n/5
cbind(trunc, x7)[801:810,]
### Different moments and truncation limits
n <- 1000
mu <- rnorm(n, 1, 0.2)
sigma <- 0.5 + rgamma(n, 1, 1)
a <- rnorm(n, -2, 1)
b <- a + rgamma(n, 1, 1)
trunc <- rep(c(0, 1, 2, 3, 4), each=n/5)
x8 <- rTNorm(n, mean=1, sd=2, a=a, b=b, trunc=trunc)
### Truncation from left only
### (extreme cases when we truncate to the area
### where the original normal distribution has
### almost zero probability)
x2b <- rTNorm(1000, mean=0, sd=1, a=7.9, trunc=0)
c(mean(x2b), sd(x2b), range(x2b))
x2c <- rTNorm(1000, mean=1, sd=2, a=16, trunc=0)
c(mean(x2c), sd(x2c), range(x2c))
### Truncation from right only (extreme cases)
x3b <- rTNorm(1000, mean=0, sd=1, a=-7.9, trunc=2)
c(mean(x3b), sd(x3b), range(x3b))
x3c <- rTNorm(1000, mean=1, sd=2, a=-13, trunc=2)
c(mean(x3c), sd(x3c), range(x3c))
### Truncation from both sides (extreme cases)
x4b <- rTNorm(1000, mean=0, sd=1, a=-9, b=-7.9, trunc=3)
c(mean(x4b), sd(x4b), range(x4b))
x4c <- rTNorm(1000, mean=0, sd=1, a=7.9, b=9, trunc=3)
c(mean(x4c), sd(x4c), range(x4c))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.