Nothing
library(mlr3learners)
test_task_small = function(need_pta = TRUE) {
example_data = data.frame(
value = as.factor(c(1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1)),
variable = c(3, 1, 4, 8, 5, 41, 22, 3, 4, 29, 2, 13, 4, 26, 2, 34),
pta = as.factor(c(1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2)))
b = as_data_backend(example_data)
task = mlr3::TaskClassif$new("example", b, target = "value")
if (need_pta) task$col_roles$pta = "pta"
return(task)
}
pred_small = function() {
PredictionClassif$new(
row_ids = c(1:16),
truth = as.factor(c(1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1)),
response = as.factor(c(1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2))
)
}
test_tasks = function() {
tasks = list(tsk("adult_train")$filter(1:500), suppressWarnings(tsk("compas")$filter(1:500)))
}
test_measures = function() {
msrs(c("fairness.tpr", "fairness.fnr"))
}
test_bmr = function() {
lrns = list(lrn("classif.rpart", predict_type = "prob"), lrn("classif.featureless", predict_type = "prob"))
tasks = test_tasks()
fairness_measures = test_measures()
benchmark(benchmark_grid(tasks = tasks, learners = lrns, rsmp("cv", folds = 3L)))
}
make_classif_regr_task = function(data, task_type) {
if (task_type == "classif") {
data$value = as.factor(data$value)
b = as_data_backend(data)
task = mlr3::TaskClassif$new("example", b, target = "value")
} else if (task_type == "regr") {
b = as_data_backend(data)
task = mlr3::TaskRegr$new("example", b, target = "value")
} else {
stop("Task type must be classif or regr!")
}
return(task)
}
# One non-binary pta
test_task_multipta = function(task_type, need_pta = TRUE) {
example_data = data.frame(
value = rep(1:2, 10),
variable = rep(rep(c(1, 4, 3, 6), each = 5)),
var2 = rnorm(20),
pta = as.factor(rep(1:4, 5))
)
task = make_classif_regr_task(example_data, task_type)
if (need_pta) task$col_roles$pta = "pta"
return(task)
}
# Two ptas
test_task_intersect = function(task_type, need_pta = TRUE) {
example_data = data.frame(
value = rep(1:2, 10),
variable = rep(rep(c(1, 4, 3, 6), each = 5)),
var2 = rnorm(20),
pta1 = as.factor(rep(1:2, 5)),
pta2 = as.factor(rep(1:2, each = 5))
)
task = make_classif_regr_task(example_data, task_type)
if (need_pta) task$col_roles$pta = c("pta1", "pta2")
return(task)
}
# Multiclass outcome / two ptas
test_task_multicl = function(task_type, need_pta = TRUE) {
example_data = data.frame(
value = rep(1:4, 5),
variable = rep(rep(c(1, 4, 3, 6), each = 5)),
var2 = rnorm(20),
pta1 = as.factor(rep(1:2, 5)),
pta2 = as.factor(rep(1:2, each = 5))
)
task = make_classif_regr_task(example_data, task_type)
if (need_pta) task$col_roles$pta = c("pta1", "pta2")
return(task)
}
# continuous protected attribute
test_task_contpta = function(task_type, need_pta = TRUE) {
example_data = data.frame(
value = rep(1:4, 5),
variable = rep(rep(c(1, 4, 3, 6), each = 5)),
var2 = rnorm(20),
pta = rnorm(20)
)
task = make_classif_regr_task(example_data, task_type)
if (need_pta) task$col_roles$pta = "pta"
return(task)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.