Nothing
test_that("ArchiveAsyncFSelect access methods work", {
skip_on_cran()
skip_if_not_installed("rush")
flush_redis()
on.exit({
mirai::daemons(0)
flush_redis()
})
mirai::daemons(2)
rush::rush_plan(n_workers = 2, worker_type = "remote")
instance = fsi_async(
task = tsk("pima"),
learner = lrn("classif.rpart"),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 20),
store_benchmark_result = TRUE
)
fselector = fs("async_random_search")
fselector$optimize(instance)
# learner
walk(seq(instance$rush$n_finished_tasks), function(i) {
expect_learner(instance$archive$learner(i = i))
})
# learners
walk(seq(instance$rush$n_finished_tasks), function(i) {
expect_list(instance$archive$learners(i))
expect_learner(instance$archive$learners(i)[[1]])
})
# predictions
walk(seq(instance$rush$n_finished_tasks), function(i) {
expect_list(instance$archive$predictions(i))
expect_prediction(instance$archive$predictions(i)[[1]])
})
# resample result
walk(seq(instance$rush$n_finished_tasks), function(i) {
expect_resample_result(instance$archive$resample_result(i))
})
expect_benchmark_result(instance$archive$benchmark_result)
expect_gte(instance$archive$benchmark_result$n_resample_results, 20L)
expect_null(instance$archive$resample_result(1)$learners[[1]]$model)
expect_rush_reset(instance$rush)
})
test_that("ArchiveAsyncFSelect as.data.table function works", {
skip_on_cran()
skip_if_not_installed("rush")
flush_redis()
on.exit({
mirai::daemons(0)
flush_redis()
})
mirai::daemons(2)
rush::rush_plan(n_workers = 2, worker_type = "remote")
instance = fsi_async(
task = tsk("pima"),
learner = lrn("classif.rpart"),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 20),
store_benchmark_result = TRUE
)
fselector = fs("async_random_search")
fselector$optimize(instance)
# default
tab = as.data.table(instance$archive)
expect_data_table(tab, min.rows = 20)
expect_names(names(tab), must.include = c("age", "glucose", "insulin", "mass", "pedigree", "pregnant", "pressure", "triceps", "classif.ce", "runtime_learners", "timestamp_xs", "timestamp_ys", "warnings", "errors"))
# extra measure
tab = as.data.table(instance$archive, measures = msr("classif.acc"))
expect_data_table(tab, min.rows = 20)
expect_names(names(tab), must.include = c("classif.acc"))
# extra measures
tab = as.data.table(instance$archive, measures = msrs(c("classif.acc", "classif.mcc")))
expect_data_table(tab, min.rows = 20)
expect_names(names(tab), must.include = c("classif.acc", "classif.mcc"))
# exclude column
tab = as.data.table(instance$archive, exclude_columns = "timestamp_xs")
expect_data_table(tab, min.rows = 20)
expect_false("timestamp_xs" %in% names(tab))
# exclude columns
tab = as.data.table(instance$archive, exclude_columns = c("timestamp_xs", "resample_result"))
expect_data_table(tab, min.rows = 20)
expect_false(any(c("timestamp_xs", "resample_result") %in% names(tab)))
# no exclude
tab = as.data.table(instance$archive, exclude_columns = NULL)
expect_data_table(tab, min.rows = 20)
expect_true(all(c("timestamp_xs", "resample_result") %in% names(tab)))
# no unnest
tab = as.data.table(instance$archive, unnest = NULL)
expect_data_table(tab, min.rows = 20)
expect_rush_reset(instance$rush)
})
test_that("ArchiveAsyncFSelect as.data.table function works without resample result", {
skip_on_cran()
skip_if_not_installed("rush")
flush_redis()
on.exit({
mirai::daemons(0)
flush_redis()
})
mirai::daemons(2)
rush::rush_plan(n_workers = 2, worker_type = "remote")
instance = fsi_async(
task = tsk("pima"),
learner = lrn("classif.rpart"),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 20),
store_benchmark_result = FALSE
)
fselector = fs("async_random_search")
fselector$optimize(instance)
tab = as.data.table(instance$archive)
expect_data_table(tab, min.rows = 20)
expect_false("resample_result" %in% names(tab))
expect_rush_reset(instance$rush)
})
test_that("ArchiveAsyncFSelect as.data.table function works with empty archive", {
skip_on_cran()
skip_if_not_installed("rush")
flush_redis()
on.exit({
mirai::daemons(0)
flush_redis()
})
mirai::daemons(2)
rush::rush_plan(n_workers = 2, worker_type = "remote")
instance = fsi_async(
task = tsk("pima"),
learner = lrn("classif.rpart"),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 20),
store_benchmark_result = FALSE
)
expect_data_table(as.data.table(instance$archive), nrows = 0, ncols = 0)
expect_rush_reset(instance$rush)
})
test_that("ArchiveAsyncFSelect as.data.table function works with multi-crit", {
skip_on_cran()
skip_if_not_installed("rush")
flush_redis()
on.exit({
mirai::daemons(0)
flush_redis()
})
mirai::daemons(2)
rush::rush_plan(n_workers = 2, worker_type = "remote")
instance = fsi_async(
task = tsk("pima"),
learner = lrn("classif.rpart"),
resampling = rsmp("cv", folds = 3),
measures = msrs(c("classif.ce", "classif.acc")),
terminator = trm("evals", n_evals = 20),
store_benchmark_result = TRUE
)
fselector = fs("async_random_search")
fselector$optimize(instance)
tab = as.data.table(instance$archive)
expect_data_table(tab, min.rows = 20)
expect_names(names(tab), must.include = c("classif.ce", "classif.acc"))
expect_rush_reset(instance$rush)
})
test_that("ArchiveAsyncFSelect stores models if requested", {
skip_on_cran()
skip_if_not_installed("rush")
flush_redis()
on.exit({
mirai::daemons(0)
flush_redis()
})
mirai::daemons(2)
rush::rush_plan(n_workers = 2, worker_type = "remote")
instance = fsi_async(
task = tsk("pima"),
learner = lrn("classif.rpart"),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 3),
store_benchmark_result = TRUE,
store_models = TRUE
)
fselector = fs("async_random_search")
fselector$optimize(instance)
expect_benchmark_result(instance$archive$benchmark_result)
expect_gte(instance$archive$benchmark_result$n_resample_results, 3L)
expect_class(instance$archive$resample_result(1)$learners[[1]]$model, "rpart")
expect_rush_reset(instance$rush)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.