Nothing
#' @title Acquisition Function Expected Improvement
#'
#' @include AcqFunction.R
#' @name mlr_acqfunctions_ei
#'
#' @templateVar id ei
#' @template section_dictionary_acqfunctions
#'
#' @description
#' Expected Improvement.
#'
#' @section Parameters:
#' * `"epsilon"` (`numeric(1)`)\cr
#' \eqn{\epsilon} value used to determine the amount of exploration.
#' Higher values result in the importance of improvements predicted by the posterior mean
#' decreasing relative to the importance of potential improvements in regions of high predictive uncertainty.
#' Defaults to `0` (standard Expected Improvement).
#'
#' @references
#' * `r format_bib("jones_1998")`
#'
#' @family Acquisition Function
#' @export
#' @examples
#' if (requireNamespace("mlr3learners") &
#' requireNamespace("DiceKriging") &
#' requireNamespace("rgenoud")) {
#' library(bbotk)
#' library(paradox)
#' library(mlr3learners)
#' library(data.table)
#'
#' fun = function(xs) {
#' list(y = xs$x ^ 2)
#' }
#' domain = ps(x = p_dbl(lower = -10, upper = 10))
#' codomain = ps(y = p_dbl(tags = "minimize"))
#' objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)
#'
#' instance = OptimInstanceBatchSingleCrit$new(
#' objective = objective,
#' terminator = trm("evals", n_evals = 5))
#'
#' instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))
#'
#' learner = default_gp()
#'
#' surrogate = srlrn(learner, archive = instance$archive)
#'
#' acq_function = acqf("ei", surrogate = surrogate)
#'
#' acq_function$surrogate$update()
#' acq_function$update()
#' acq_function$eval_dt(data.table(x = c(-1, 0, 1)))
#' }
AcqFunctionEI = R6Class("AcqFunctionEI",
inherit = AcqFunction,
public = list(
#' @field y_best (`numeric(1)`)\cr
#' Best objective function value observed so far.
#' In the case of maximization, this already includes the necessary change of sign.
y_best = NULL,
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#'
#' @param surrogate (`NULL` | [SurrogateLearner]).
#' @param epsilon (`numeric(1)`).
initialize = function(surrogate = NULL, epsilon = 0) {
assert_r6(surrogate, "SurrogateLearner", null.ok = TRUE)
assert_number(epsilon, lower = 0, finite = TRUE)
constants = ps(epsilon = p_dbl(lower = 0, default = 0))
constants$values$epsilon = epsilon
super$initialize("acq_ei", constants = constants, surrogate = surrogate, requires_predict_type_se = TRUE, direction = "maximize", label = "Expected Improvement", man = "mlr3mbo::mlr_acqfunctions_ei")
},
#' @description
#' Update the acquisition function and set `y_best`.
update = function() {
self$y_best = min(self$surrogate_max_to_min * self$archive$data[[self$surrogate$cols_y]])
}
),
private = list(
.fun = function(xdt, ...) {
if (is.null(self$y_best)) {
stop("$y_best is not set. Missed to call $update()?")
}
constants = list(...)
epsilon = constants$epsilon
p = self$surrogate$predict(xdt)
mu = p$mean
se = p$se
d = (self$y_best - self$surrogate_max_to_min * mu) - epsilon
d_norm = d / se
ei = d * pnorm(d_norm) + se * dnorm(d_norm)
ei = ifelse(se < 1e-20, 0, ei)
data.table(acq_ei = ei)
}
)
)
mlr_acqfunctions$add("ei", AcqFunctionEI)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.