Nothing
#' @title Acquisition Function Expected Improvement on Log Scale
#'
#' @include AcqFunction.R
#' @name mlr_acqfunctions_ei_log
#'
#' @templateVar id ei_log
#' @template section_dictionary_acqfunctions
#'
#' @description
#' Expected Improvement assuming that the target variable has been modeled on log scale.
#' In general only sensible if the [SurrogateLearner] uses an [OutputTrafoLog] without inverting the posterior predictive distribution (`invert_posterior = FALSE`).
#' See also the example below.
#'
#' @section Parameters:
#' * `"epsilon"` (`numeric(1)`)\cr
#' \eqn{\epsilon} value used to determine the amount of exploration.
#' Higher values result in the importance of improvements predicted by the posterior mean
#' decreasing relative to the importance of potential improvements in regions of high predictive uncertainty.
#' Defaults to `0` (standard Expected Improvement).
#'
#' @family Acquisition Function
#' @export
#' @examples
#' if (requireNamespace("mlr3learners") &
#' requireNamespace("DiceKriging") &
#' requireNamespace("rgenoud")) {
#' library(bbotk)
#' library(paradox)
#' library(mlr3learners)
#' library(data.table)
#'
#' fun = function(xs) {
#' list(y = xs$x ^ 2)
#' }
#' domain = ps(x = p_dbl(lower = -10, upper = 10))
#' codomain = ps(y = p_dbl(tags = "minimize"))
#' objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)
#'
#' instance = OptimInstanceBatchSingleCrit$new(
#' objective = objective,
#' terminator = trm("evals", n_evals = 5))
#'
#' instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))
#'
#' learner = default_gp()
#'
#' output_trafo = ot("log", invert_posterior = FALSE)
#'
#' surrogate = srlrn(learner, output_trafo = output_trafo, archive = instance$archive)
#'
#' acq_function = acqf("ei_log", surrogate = surrogate)
#'
#' acq_function$surrogate$update()
#' acq_function$update()
#' acq_function$eval_dt(data.table(x = c(-1, 0, 1)))
#' }
AcqFunctionEILog = R6Class("AcqFunctionEILog",
inherit = AcqFunction,
public = list(
#' @field y_best (`numeric(1)`)\cr
#' Best objective function value observed so far.
#' In the case of maximization, this already includes the necessary change of sign.
y_best = NULL,
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#'
#' @param surrogate (`NULL` | [SurrogateLearner]).
#' @param epsilon (`numeric(1)`).
initialize = function(surrogate = NULL, epsilon = 0) {
assert_r6(surrogate, "SurrogateLearner", null.ok = TRUE)
assert_number(epsilon, lower = 0, finite = TRUE)
constants = ps(epsilon = p_dbl(lower = 0, default = 0))
constants$values$epsilon = epsilon
super$initialize("acq_ei_log", constants = constants, surrogate = surrogate, requires_predict_type_se = TRUE, direction = "maximize", label = "Expected Improvement on Log Scale", man = "mlr3mbo::mlr_acqfunctions_ei_log")
},
#' @description
#' Update the acquisition function and set `y_best`.
update = function() {
assert_r6(self$surrogate$output_trafo, "OutputTrafoLog")
assert_false(self$surrogate$output_trafo$invert_posterior)
y = self$archive$data[, self$surrogate$cols_y, with = FALSE]
if (self$surrogate$output_trafo_must_be_considered) {
y = self$surrogate$output_trafo$transform(y)
}
self$y_best = min(self$surrogate_max_to_min * y)
}
),
private = list(
.fun = function(xdt, ...) {
if (is.null(self$y_best)) {
stop("$y_best is not set. Missed to call $update()?")
}
assert_r6(self$surrogate$output_trafo, "OutputTrafoLog")
assert_false(self$surrogate$output_trafo$invert_posterior)
constants = list(...)
epsilon = constants$epsilon
p = self$surrogate$predict(xdt)
mu = p$mean
se = p$se
# FIXME: try to unify w.r.t minimization / maximization and the respective transformation
if (self$surrogate_max_to_min == 1L) {
# y is to be minimized and the OutputTrafoLog performed the transformation accordingly
assert_true(self$surrogate$output_trafo$max_to_min == 1L)
y_best = self$y_best
d = (y_best - mu) - epsilon
d_norm = d / se
multiplicative_factor = (self$surrogate$output_trafo$state[[self$surrogate$output_trafo$cols_y]]$max - self$surrogate$output_trafo$state[[self$surrogate$output_trafo$cols_y]]$min)
ei_log = multiplicative_factor * ((exp(y_best) * pnorm(d_norm)) - (exp((0.5 * se^2) + mu)) * pnorm(d_norm - se))
} else {
# y is to be maximized and the OutputTrafoLog performed the transformation accordingly
y_best = - self$y_best
d = (mu - y_best) - epsilon
d_norm = d / se
multiplicative_factor = (self$surrogate$output_trafo$state[[self$surrogate$output_trafo$cols_y]]$max - self$surrogate$output_trafo$state[[self$surrogate$output_trafo$cols_y]]$min)
ei_log = multiplicative_factor * ((exp(-y_best) * pnorm(d_norm)) - (exp((0.5 * se^2) - mu) * pnorm(d_norm - se)))
}
ei_log = ifelse(se < 1e-20 | is.na(ei_log), 0, ei_log)
data.table(acq_ei_log = ei_log)
}
)
)
mlr_acqfunctions$add("ei_log", AcqFunctionEILog)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.