Nothing
#' @title Acquisition Function Stochastic Expected Improvement
#'
#' @include AcqFunction.R
#' @name mlr_acqfunctions_stochastic_ei
#'
#' @templateVar id stochastic_ei
#' @template section_dictionary_acqfunctions
#'
#' @description
#' Expected Improvement with epsilon decay.
#' \eqn{\epsilon} is updated after each update by the formula `epsilon * exp(-rate * (t %% period))` where `t` is the number of times the acquisition function has been updated.
#'
#' While this acquisition function usually would be used within an asynchronous optimizer, e.g., [OptimizerAsyncMbo],
#' it can in principle also be used in synchronous optimizers, e.g., [OptimizerMbo].
#'
#' @section Parameters:
#' * `"epsilon"` (`numeric(1)`)\cr
#' \eqn{\epsilon} value used to determine the amount of exploration.
#' Higher values result in the importance of improvements predicted by the posterior mean
#' decreasing relative to the importance of potential improvements in regions of high predictive uncertainty.
#' Defaults to `0.1`.
#' * `"rate"` (`numeric(1)`)\cr
# Rate of the exponential decay.
#' Defaults to `0.05`.
#' * `"period"` (`integer(1)`)\cr
#' Period of the exponential decay.
#' Defaults to `NULL`, i.e., the decay has no period.
#'
#' @section Note:
#' * This acquisition function always also returns its current (`acq_epsilon`) and original (`acq_epsilon_0`) \eqn{\epsilon}.
#' These values will be logged into the [bbotk::ArchiveBatch] of the [bbotk::OptimInstanceBatch] of the [AcqOptimizer] and
#' therefore also in the [bbotk::Archive] of the actual [bbotk::OptimInstance] that is to be optimized.
#'
#' @references
#' * `r format_bib("jones_1998")`
#'
#' @family Acquisition Function
#' @export
#' @examples
#' if (requireNamespace("mlr3learners") &
#' requireNamespace("DiceKriging") &
#' requireNamespace("rgenoud")) {
#' library(bbotk)
#' library(paradox)
#' library(mlr3learners)
#' library(data.table)
#'
#' fun = function(xs) {
#' list(y = xs$x ^ 2)
#' }
#' domain = ps(x = p_dbl(lower = -10, upper = 10))
#' codomain = ps(y = p_dbl(tags = "minimize"))
#' objective = ObjectiveRFun$new(fun = fun, domain = domain, codomain = codomain)
#'
#' instance = OptimInstanceBatchSingleCrit$new(
#' objective = objective,
#' terminator = trm("evals", n_evals = 5))
#'
#' instance$eval_batch(data.table(x = c(-6, -5, 3, 9)))
#'
#' learner = default_gp()
#'
#' surrogate = srlrn(learner, archive = instance$archive)
#'
#' acq_function = acqf("stochastic_ei", surrogate = surrogate)
#'
#' acq_function$surrogate$update()
#' acq_function$update()
#' acq_function$eval_dt(data.table(x = c(-1, 0, 1)))
#' }
AcqFunctionStochasticEI = R6Class("AcqFunctionStochasticEI",
inherit = AcqFunction,
public = list(
#' @field y_best (`numeric(1)`)\cr
#' Best objective function value observed so far.
#' In the case of maximization, this already includes the necessary change of sign.
y_best = NULL,
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#'
#' @param surrogate (`NULL` | [SurrogateLearner]).
#' @param epsilon (`numeric(1)`).
#' @param rate (`numeric(1)`).
#' @param period (`NULL` | `integer(1)`).
initialize = function(
surrogate = NULL,
epsilon = 0.1,
rate = 0.05,
period = NULL
) {
assert_r6(surrogate, "SurrogateLearner", null.ok = TRUE)
private$.epsilon_0 = assert_number(epsilon, lower = 0, finite = TRUE)
private$.rate = assert_number(rate, lower = 0, finite = TRUE)
private$.period = assert_int(period, lower = 1, null.ok = TRUE)
constants = ps(epsilon = p_dbl(lower = 0, default = 0.1))
super$initialize("acq_ei",
constants = constants,
surrogate = surrogate,
requires_predict_type_se = TRUE,
direction = "maximize",
label = "Stochastic Expected Improvement",
man = "mlr3mbo::mlr_acqfunctions_stochastic_ei")
},
#' @description
#' Update the acquisition function.
#' Sets `y_best` to the best observed objective function value.
#' Decays epsilon.
update = function() {
y = self$archive$data[, self$surrogate$cols_y, with = FALSE]
if (self$surrogate$output_trafo_must_be_considered) {
y = self$surrogate$output_trafo$transform(y)
}
self$y_best = min(self$surrogate_max_to_min * y)
# decay epsilon
epsilon_0 = private$.epsilon_0
period = private$.period
t = if (is.null(period)) private$.t else private$.t %% period
rate = private$.rate
self$constants$values$epsilon = epsilon_0 * exp(-rate * t)
private$.t = t + 1L
},
#' @description
#' Reset the acquisition function.
#' Resets the private update counter `.t` used within the epsilon decay.
reset = function() {
private$.t = 0L
}
),
private = list(
.rate = NULL,
.period = NULL,
.epsilon_0 = NULL,
.t = 0L,
.fun = function(xdt, epsilon) {
if (is.null(self$y_best)) {
stop("$y_best is not set. Missed to call $update()?")
}
p = self$surrogate$predict(xdt)
mu = p$mean
se = p$se
d = (self$y_best - self$surrogate_max_to_min * mu) - epsilon
d_norm = d / se
ei = d * pnorm(d_norm) + se * dnorm(d_norm)
ei = ifelse(se < 1e-20, 0, ei)
data.table(acq_ei = ei, acq_epsilon = epsilon, acq_epsilon_0 = private$.epsilon_0)
}
)
)
mlr_acqfunctions$add("stochastic_ei", AcqFunctionStochasticEI)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.