tests/testthat/test_pipeop_adas.R

context("PipeOpADAS")

test_that("PipeOpADAS - basic properties", {
  skip_if_not_installed("smotefamily")

  task = mlr_tasks$get("spam")

  expect_datapreproc_pipeop_class(PipeOpADAS, task = task, predict_like_train = FALSE, deterministic_train = FALSE)
})

test_that("PipeOpADAS - train works as intended", {
  skip_if_not_installed("smotefamily")

  op = PipeOpADAS$new()

  df = data.frame(
    target = factor(sample(c("c1", "c2"), size = 200, replace = TRUE, prob = c(0.1, 0.9))),
    x1 = rnorm(200),
    x2 = rnorm(200)
  )
  task = TaskClassif$new(id = "test", backend = df, target = "target")

  # Compare to smotefamily::ADAS with default params
  set.seed(1234L)
  train_out = op$train(list(task))[[1]]$data()
  set.seed(1234L)
  df_out = invoke(smotefamily::ADAS, X = task$data(cols = task$feature_names), target = task$truth(),
                  .opts = list(warnPartialMatchArgs = FALSE))$syn_data
  # Rename class column to target and rbind for same row and col order
  # Rename by name (not position) to notice should the order of columns outputed by smotefamily::ADAS be changed in the future
  setnames(df_out, "class", "target")
  adas_out = setDT(rbind(df, df_out))

  expect_equal(train_out, adas_out)

  # Compare to smotefamily::ADAS with changed params
  op$param_set$set_values(K = 10)

  set.seed(1234L)
  train_out = op$train(list(task))[[1]]$data()
  set.seed(1234L)
  df_out = invoke(smotefamily::ADAS, X = task$data(cols = task$feature_names), target = task$truth(), K = 10,
                  .opts = list(warnPartialMatchArgs = FALSE))$syn_data
  setnames(df_out, "class", "target")
  adas_out = setDT(rbind(df, df_out))

  expect_equal(train_out, adas_out)

  # Empty task is returned unchanged
  task$select(character(0))
  expect_equal(
    op$train(list(task))[[1L]],
    task
  )

})

test_that("PipeOpADAS - handling of feature named 'class'", {
  skip_if_not_installed("smotefamily")

  op = PipeOpADAS$new()

  df = data.frame(
    target = factor(sample(c("c1", "c2"), size = 200, replace = TRUE, prob = c(0.1, 0.9))),
    class = rnorm(200),
    x = rnorm(200)
  )
  task = TaskClassif$new(id = "test", backend = df, target = "target")

  set.seed(1234L)
  train_out = op$train(list(task))[[1]]$data()
  set.seed(1234L)
  df_out = invoke(smotefamily::ADAS, X = task$data(cols = task$feature_names), target = task$truth(),
                  .opts = list(warnPartialMatchArgs = FALSE))$syn_data
  # Renaming by position
  setnames(df_out, 3, "target")
  adas_out = setDT(rbind(df, df_out))

  expect_equal(train_out, adas_out)

})

Try the mlr3pipelines package in your browser

Any scripts or data that you put into this service are public.

mlr3pipelines documentation built on Sept. 30, 2024, 9:37 a.m.