Nothing

```
context("PipeOpRandomResponse")
test_that("basic properties", {
expect_pipeop_class(PipeOpRandomResponse)
expect_error(PipeOpCopy$new(param_vals = list(rdistfun = function(n) {})))
po = PipeOpRandomResponse$new()
expect_pipeop(po)
expect_data_table(po$input, nrows = 1)
expect_data_table(po$output, nrows = 1)
})
test_that("train and predict", {
task1 = mlr_tasks$get("iris")
task1$row_roles$use = c(1:10, 140:150)
g1 = LearnerClassifRpart$new() %>>% PipeOpRandomResponse$new()
g1$pipeops$classif.rpart$learner$predict_type = "prob"
train_out1 = g1$train(task1)
expect_list(train_out1)
expect_null(train_out1[[1L]])
predict_out1 = g1$predict(task1)
expect_list(predict_out1)
expect_prediction(predict_out1[[1L]])
expect_equal(task1$data(cols = "Species")[[1L]], predict_out1[[1L]]$truth)
expect_factor(predict_out1[[1L]]$response, levels = levels(predict_out1[[1L]]$truth), ordered = is.ordered(predict_out1[[1L]]$truth))
expect_null(predict_out1[[1L]]$prob)
learner1 = LearnerClassifRpart$new()
learner1$train(task1)
g1x = LearnerClassifRpart$new() %>>% PipeOpRandomResponse$new()
g1x$train(task1)
expect_equal(g1x$predict(task1)[[1L]], learner1$predict(task1))
task2 = mlr_tasks$get("mtcars")
g2 = mlr3learners::LearnerRegrLM$new() %>>% PipeOpRandomResponse$new()
g2$pipeops$regr.lm$learner$predict_type = "se"
train_out2 = g2$train(task2)
expect_list(train_out2)
expect_null(train_out2[[1L]])
predict_out2 = g2$predict(task2)
expect_list(predict_out2)
expect_prediction(predict_out2[[1L]])
expect_equal(task2$data(cols = "mpg")[[1L]], predict_out2[[1L]]$truth)
expect_numeric(predict_out2[[1L]]$response, finite = TRUE, any.missing = FALSE)
expect_numeric(na.omit(predict_out2[[1L]]$se), len = 0L)
g2$pipeops$randomresponse$param_set$values$rdistfun = function(n, mean, sd) {
expect_equal(length(mean), n)
expect_equal(length(sd), n)
runif(n, min = 0, max = 1)
}
expect_numeric(g2$predict(task2)[[1L]]$response, lower = 0, upper = 1, any.missing = FALSE)
learner2 = mlr3learners::LearnerRegrLM$new()
learner2$train(task2)
g2x = mlr3learners::LearnerRegrLM$new() %>>% PipeOpRandomResponse$new()
g2x$train(task2)
expect_equal(g2x$predict(task2)[[1L]], learner2$predict(task2))
})
```

**Any scripts or data that you put into this service are public.**

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.